Home
Class 11
MATHS
If the position vectors of A, B, C, D re...

If the position vectors of A, B, C, D respectively are `2bar(i)+4bar(k), 5bar(i)+3sqrt(3)j+4bar(k), -2sqrt(3)bar(j)+bar(k) and 2bar(i)+bar(k)` respectively, then prove that `bar(CD)` is parallel to `bar(AB) and bar(CD)=2/3bar(AB)`.

Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.1 SHORT ANSWER QUESTIONS|16 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.2 VERY SHORT ANSWER QUESTIONS|3 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|10 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL II) (Linked Comprehension Type Questions Passage -III:)|3 Videos
  • RATE MEASUREMENT

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - 1) (LEVEL - 1) (STRAIGHT OBJECTIVE TYPE QUESTION)|43 Videos

Similar Questions

Explore conceptually related problems

If the position vectors of A, B, C, D are 3bar(i)+2bar(j)+bar(k), 4bar(i)+5bar(j)+5bar(k), 4bar(i)+2bar(j)-2bar(k), 6bar(i)+5bar(j)-bar(k) respectively then the position vector of the point of intersection of lines AB and CD is

If the position vectors of the points A,B,C are -2bar(i)+bar(j)-bar(k), -4bar(i)+2bar(j)+2bar(k), 6bar(i)-3bar(j)-13bar(k) respectively and bar(AB) = lambda bar(AC) then find the value of lambda .

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

The position vector of the points P, Q, R, S are bar(i)+bar(j)+bar(k), 2bar(i)+5bar(j), 3bar(i)+2bar(j)-3bar(k) and bar(i)-6bar(j)-bar(k) respectively. Prove that bar(PQ) and bar(RS) are parallel and find the ratio of their lengths.

Show that bar(a)=bar(i)+2bar(j)+bar(k), bar(b)=2bar(i)+bar(j)+3bar(k) and bar(c)=bar(i)+bar(k) are linearly independent.

Compute 2 bar(j) xx (3bar(i) - 4bar(k)) + (bar(i)+2bar(j)) xx bar(k) .

If bar(a) = 2bar(i) - bar(j) + bar(k), and bar(b) = bar(i) - 3bar(j) - 5bar(k) then find |bar(a) xx bar(b)| .

If bar(OA)=bar(i)+2bar(j)-3bar(k), bar(OB)=3bar(i)-2bar(j)+5bar(k) and 2bar(AC)=3bar(AB)" then "bar(AC)=