Home
Class 11
MATHS
If vec(a) + vec(b) + vec(c )= vec(0) and...

If `vec(a) + vec(b) + vec(c )= vec(0) and |vec(a) xx vec(b)|=3`, then `|vec(b) xx vec(c )|`=

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Practice Exercise|34 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-I|22 Videos
  • TRIGONOMETRIC RATIOS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) (PRACTICE SHEET (ADVANCED) SIGNLE ANSWER TYPE QUESTIONS)|23 Videos

Similar Questions

Explore conceptually related problems

If vec(a) + 2vec(b) + 4 vec(c )= vec(0) , then vec(a) xx vec(b) + vec(b) xx vec(c )+ vec(c )xx vec(a)=

If vec(a) + 2vec(b) + 4vec(c ) = vec(0) then show that vec(a) xx vec(b) =4 (vec(b) xx vec(c ))= 2(vec(c ) xx vec(a))

If vec(u)= vec(a)- vec(b), vec(v)= vec(a) + vec(b) and |vec(a)| =|vec(b)|=2 , then |vec(u) xx vec(v)| =

Let vec(a) + m vec(b) + n vec(c )= vec(0).vec(a) xx vec(b) + vec(b) xx vec(c ) + vec(c ) xx vec(a)= vec(0) for

If vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c )= vec(b) xx vec(d) then show that vec(a)- vec(d) and vec(b) -vec(c ) are parallel vectors.

Let vec(a), vec(b), vec(c ) be three vectors satisfying vec(a) xx vec(b) = 2vec(a) xx vec(c ), |vec(a)| = |vec(c )| =1, |vec(b)|=4 and |vec(b) xx vec(c )|= sqrt15 . If vec(b)- 2vec(c )= lamda vec(a) , find the value of lamda .

If vec(p)= vec(a)-vec(b), vec(q)= vec(a) + vec(b), |vec(a)|= |vec(b)|=t " then " |vec(p) xx vec(q)| =

If vec(a).vec(b) = vec(a).vec(c ) and vec(a) xx vec(b)= vec(a) xx vec(c ) and vec(a) ne vec(0) then show that vec(b)= vec(c )

If vec(a) xx vec(b)= vec(c ) xx vec(d), vec(a) xx vec(c )= vec(b) xx vec(d) , then

Let vec(a)= vec(i) + vec(j), vec(b)= 2vec(j)-vec(k) . If vec(r ) xx vec(a) = vec(b) xx vec(a), vec(r ) xx vec(b) = vec(a) xx vec(b) , then (vec(r ))/(|vec(r )|) =

AAKASH SERIES-VECTOR (CROSS) PRODUCT OF TWO VECTORS-Exercise-II
  1. If vec(a) + 2vec(b) + 4 vec(c )= vec(0), then vec(a) xx vec(b) + vec(b...

    Text Solution

    |

  2. If vec(a) xx vec(b) = vec(b) xx vec(c )= vec(c )xx vec(a), where vec(a...

    Text Solution

    |

  3. If vec(a) + vec(b) + vec(c )= vec(0) and |vec(a) xx vec(b)|=3, then |v...

    Text Solution

    |

  4. If (vec(a) xx vec(b))^(2) + (vec(a).vec(b))^(2)=144 and |vec(a)|=4" th...

    Text Solution

    |

  5. If vec(p)= vec(a)-vec(b), vec(q)= vec(a) + vec(b), |vec(a)|= |vec(b)|=...

    Text Solution

    |

  6. If vec(i), vec(j), vec(k) are unit orthonormal vectors and vec(a) is a...

    Text Solution

    |

  7. Assertion (A): Let vec(a) = a(1) vec(i) + a(2) vec(j) + a(3) vec(k). T...

    Text Solution

    |

  8. If vec(a), vec(b) are not perpendicular to each other and vec(r ) xx v...

    Text Solution

    |

  9. If vec(r ) xx vec(a) = vec(b) xx vec(a), vec(r ) xx vec(b) = vec(a) xx...

    Text Solution

    |

  10. Let vec(a)= vec(i) + vec(j), vec(b)= 2vec(j)-vec(k). If vec(r ) xx vec...

    Text Solution

    |

  11. If vec(a) = vec(i) + 2vec(j) - 3vec(k), vec(b)= 2vec(i) + vec(j) - vec...

    Text Solution

    |

  12. If |vec(a)|=sqrt3, |vec(b)|=2, (vec(a), vec(b))= (pi)/(3), then the ar...

    Text Solution

    |

  13. Observe the following statements: Assertion (A) : If vertices of a t...

    Text Solution

    |

  14. The vector area of the parallelogram whose adjacent sides vec(i) + vec...

    Text Solution

    |

  15. Arrange the following in ascending order of magnitude (A) Area of pa...

    Text Solution

    |

  16. If ABCD is a quadrillateral such that vec(AB) = vec(i) + 2vec(j), vec(...

    Text Solution

    |

  17. vec(OA)= vec(a), vec(OB)= 10vec(a) + 2vec(b), vec(OC)= vec(b) where O,...

    Text Solution

    |

  18. The distance of the point B with P.V. vec(i) + 2vec(j) + 3vec(k) from ...

    Text Solution

    |

  19. If vec(OA)= (1, 2, -5), vec(OB)= (-2, 2,1), vec(OC)= (4, 3, -1) then p...

    Text Solution

    |

  20. The perpendicular distance of any point vec(a) on to the line vec(r )=...

    Text Solution

    |