Home
Class 11
MATHS
The period of ( tan theta -(1)/(3) tan^(...

The period of `( tan theta -(1)/(3) tan^(3) theta ) ((1)/(3) - tan^(2) theta )^(-1), ` where `tan^(2) theta ne (1)/(3) `is :

A

`(pi)/(3)`

B

`(2pi)/(3)`

C

`pi`

D

`2pi`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • PERIODICITY EXTREME VALUES AND GRAPHS

    AAKASH SERIES|Exercise EXERCISE-II|25 Videos
  • PERIODICITY EXTREME VALUES AND GRAPHS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|33 Videos
  • PERIODICITY EXTREME VALUES AND GRAPHS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|20 Videos
  • PERIODICITY AND EXTREME VALUES

    AAKASH SERIES|Exercise Practice Sheet (Exericise-I) Level-II (Straight Objective Type Questions)|31 Videos
  • PLANES

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|30 Videos

Similar Questions

Explore conceptually related problems

tantheta+(1)/(3)tan^(3)theta+(1)/(5)tan^(5)theta+....=

( tan^(3) theta )/( 1+ tan^(2) theta )+ ( cot^(3) theta )/( 1+ cot^(2) theta )=

If (tan theta - 1)(tan^(2)theta - 3) = 0 then theta =

The period of tan theta+ tan (theta+(pi)/(3)) +tan (theta+(2pi)/(3)) is

(tan^2 theta)/(1 + tan^2 theta) =………...

tan^(2)theta-(1)/(2)tan^(4)theta+(1)/(3)tan^(6)theta-(1)/(4)tan^(8)theta+....=

The general solution of tan theta tan 2theta=1 is