Home
Class 11
MATHS
cos^(-1)((-3)/4)=pi-sin^(-1)sqrt(1-9/16)...

`cos^(-1)((-3)/4)=pi-sin^(-1)sqrt(1-9/16)=pi-sin^(-1)((sqrt(7))/4)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise SOLVED EXAMPLES|25 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|1 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|7 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(-3/4)=-cos^(-1)sqrt(1-9/16)=-cos^(-1)((sqrt(7))/4)

cos^(-1)(1/4)=sin^(-1)sqrt(1-1/16)=sin^(-1)((sqrt(15))/4) =tan^(-1)(sqrt(15))

cos^(-1)(-1/4)=pi+tan^(-1)(-sqrt(15))

The value of Sin^(-1)(cot(Sin^(-1)sqrt((2-sqrt(3))/4)+Cos^(-1)""sqrt(12)/4+Sec^(-1)sqrt(2))) is

sin[(pi)/6+cos^(-1)(-(sqrt(3))/2)]=

If cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3pi)/4 , then the value of q is

The value of sin[(pi)/2-sin^(-1)(-(sqrt(3))/2)]=

Prove That : (9pi)/4-9/8"sin"^(-1)1/3=9/4"sin"^(-1)(2sqrt(2))/3

sin[pi/3+Cos^(-1)(-1/2)]=