Home
Class 11
MATHS
If x in (-1,1) prove that 2Tan^(-1)x="Ta...

If `x in (-1,1)` prove that `2Tan^(-1)x="Tan"^(-1)(2x)/(1-x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`2Tan^(-1)x`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE 7.1 (VERY SHORT ANSWER QUESTIONS)|32 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|7 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos

Similar Questions

Explore conceptually related problems

int Tan^(-1)((2x)/(1-x^(2)))dx=

int_(0)^(1)Tan^(-1)[(2x-1)/(1+x-x^(2))]dx=

tan^(-1)(x+sqrt(1+x^(2)))=

(d)/(dx) {Tan ^(-1) ""(2x)/(1- x ^(2))}=

int_(0)^(1) Tan^(-1) ((2x-1)/(1+x-x^(2)))dx=

If x lt -1," then "2tan^(-1)x+sin^(-1)((2x)/(1+x^(2)))=

Evaluate int tan^(-1)((2x)/(1-x^(2))) dx

Range of tan^(-1)((2x)/(1+x^(2))) is

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))