Home
Class 11
MATHS
tan[2"Tan"^(-1)(sqrt(5)-1)/2]=...

`tan[2"Tan"^(-1)(sqrt(5)-1)/2]=`

A

`1/2`

B

`3`

C

`2`

D

`3/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE-II|71 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|7 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos

Similar Questions

Explore conceptually related problems

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

tan[1/2cos^(-1)((sqrt(5))/3)]=

tan(2Tan^(-1)(sinx))=

Find the value of tan(2"Tan"^(-1)(1/5)-(pi)/4)

If "tan"^(-1)(sqrt(1+x^(2))-1)/x=4^(@) then

tan[1/2Cos^(-1)(sqrt5/3)]=

tan^(-1)(x+sqrt(1+x^(2)))=

A: int (1)/(3+2 cos x)dx=(2)/(sqrt(5))"Tan"^(-1)((1)/(sqrt(5))"tan" (x)/(2))+c R: If a gt b then int (dx)/(a+b cosx)=(2)/(sqrt(a^(2)-b^(2)))Tan^(-1)[(sqrt(a-b))/(a+b)"tan"(x)/(2)]+c

If tan^(-1)(sqrt(1+x^(2))-1)/x=4^(0) , then

sin^(-1)((sqrt(3))/2)-tan^(-1)(-sqrt(3))=