Home
Class 11
MATHS
Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x...

Prove that `tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))`

A

`(3x-x^(3))/(1-3x^(2))`

B

`(3x+x^(3))/(1-3x^(2))`

C

`(3x-x^(3))/(1+3x^(2))`

D

`(3x+x^(3))/(1+3x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE-II|71 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|7 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

If :"Tan"^(-1)(2x)/(1-x^(2))+Cot^(-1)((1-x^(2))/(2x))=(pi)/3,xgt0 then

If tan^(-1)(3)+tan^(-1)(x)=tan^(-1)(8) then x=

Sovle tan^(-1)2x+tan^(-1)3x=(pi)/4

If y = tan ^(-1) ((2x )/( 1 -x ^(2))) + tan ^(-1) ((3x - x ^(3))/( 1 - 3x ^(2)))- tan ^(-1) ((4x - 4x ^(3))/( 1 - 6x + x ^(4))), then show that (dy)/(dx) = (1)/(1 + x ^(2)).

If x in (-1,1) prove that 2Tan^(-1)x="Tan"^(-1)(2x)/(1-x^(2))

int_(-1)^(3)(Tan^(-1)""(x)/((x^(2)+1))+Tan^(-1)""(x^(2)+1)/(x))dx=

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/4 then x=

int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=