Home
Class 12
MATHS
Prove that ^nC0-^nC1+^nC2-^nC3+....+(-1)...

Prove that `^nC_0-^nC_1+^nC_2-^nC_3+....+(-1)^r ^C_r+....=(-1)^(r-1) ^(n-1)C_(r-1)`

Promotional Banner

Topper's Solved these Questions

  • Binomial Theorem for Positive Integrel Index

    A DAS GUPTA|Exercise Exercise|113 Videos
  • Application of dy/dx

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos

Similar Questions

Explore conceptually related problems

Prove that ""^nC_0+2*""^nC_1+3*""^nC_2+...+(n+1)""^nC_n=(n+2)2^(n-1)

Prove that ""^nC_0-2*""^nC_1+3*""^nC_2-...+(-1)""^n(n+1)""^nC_n=0

Prove that ""^nC_0+3*""^nC_1+5*""^nC_2+...+(2n+1)""^nC_n=(n+1)2^(n)

The value of ""^0C_0-^nC_1+^nC_2-....+ -1^(n^n)C_n is

Prove that "^nC_r + 2. ^nC_(r-1) + ^nC_(r-2) = ^(n+2)C_r

If n is a positive integer then (1+x)^n=^nC_0 x^0+^nC_1 x^1+^nC_2^2+………+^nC_rx^r= sum _(r=0)^n ^nC_rx^r and (1-x)^n= ^nC_0x^0-^nC_1 x^1 +^nC_2-^nC_3x^3+………+(-1)^n ^nC_nx^n=sum_(r=0)^n (-1)^r ^nC_r x^r On the basis of above information answer the following question:If n is a positive integer then lim_nrarroo n[^nc_n- 2/3 . ^nC_(n-1)+(2/3)^2.^nC_(n-2-...........+(-1)^n(2/3)^n.^nC_n]= (A) 1 (B) 1/2 (C) 0 (D) 1/3

If n is a positive integer then (1+x)^n=^nC_0 x^0+^nC_1 x^1+^nC_2^2+………+^nC_rx^r= sum _(r=0)^n ^nC_rx^r and (1-x)^n= ^nC_0x^0-^nC_1 x^1 +^nC_2-^nC_3x^3+………+(-1)^n ^nC_nx^n=sum_(r=0)^n (-1)^r ^nC_r x^r On the basis of above information answer the following question: If n is a positive integer then 1/((49)^n) - 8/((49)^n)(^(2n)C_1)+8^2/((49)^n)( ^(2n)C_2)- 8^3/((49)^n)(^(2n)c_3)+......+8^(2n)/((49)^n)= (A) -1 (B) 1 (C) (64/49)^n (D) none of these

Prove that C_(0)2^(2)C_(1)+3C_(2)4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)C_(n)=0 where C_(r)=nC_(r)

Show that nC_(r)=(n-r+1)/(r)*(nC_(r-1))

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)

A DAS GUPTA-Binomial Theorem for Positive Integrel Index-Exercise
  1. Prove that ^nC0-^nC1+^nC2-^nC3+....+(-1)^r ^Cr+....=(-1)^(r-1) ^(n-1)C...

    Text Solution

    |

  2. Determine the constant term in the expansion of (1+x+x^2+x^3)^10

    Text Solution

    |

  3. If the fourth term in the expansion of (px+1/x)^n is 5/2, then (n,p)...

    Text Solution

    |

  4. Show that there wil be a term independent of x in the expansion of (x^...

    Text Solution

    |

  5. Find the term which does not contain irrational expression in the expa...

    Text Solution

    |

  6. If in any binomial expansion a, b, c and d be the 6th, 7th, 8th and 9t...

    Text Solution

    |

  7. The value of x in the expression (x+x^((log)(10)))^5 if third term in ...

    Text Solution

    |

  8. Prove that the coefficient of the middle term in the expansion of (1+x...

    Text Solution

    |

  9. In the expansion of (1 + x)^43 ,the co-efficients of (2r + 1)th and (r...

    Text Solution

    |

  10. Prove that in the expansion of (1+x)^(2n), the coefficient of x^n is d...

    Text Solution

    |

  11. The coefficient of 5th, 6th and 7th terms in the expansion of (1+x)^n ...

    Text Solution

    |

  12. Given positive integers r>1,n> 2, n being even and the coefficient of...

    Text Solution

    |

  13. If the coefficients of three consecutive terms in the expansion of (1 ...

    Text Solution

    |

  14. If a,b,c be the three consecutive coefficients in the expansion of a p...

    Text Solution

    |

  15. If a,b,c and d are any four consecutive coefficients in the expansi...

    Text Solution

    |

  16. If a,b,c and d are any four consecutive coefficients in the expansi...

    Text Solution

    |

  17. If the four consecutive coefficients in any binomial expansion be a, b...

    Text Solution

    |

  18. Let (1+x^2)^2*(1+x)^n=sum(k=0)^(n+4)ak*x^k If a1, a2 and a3 are iun ...

    Text Solution

    |

  19. If n be a positive integer then prove that the integral part P of (5+2...

    Text Solution

    |

  20. If (9+4sqrt5)^n=p+beta where n and p are positive integers and beta is...

    Text Solution

    |

  21. Integer just greater tehn (sqrt(3)+1)^(2n) is necessarily divisible by...

    Text Solution

    |