Home
Class 12
MATHS
The sum of the series 1/(1!(n-1)!)+1/(3!...

The sum of the series `1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+…..+1/((n-1)!1!)` is = (A) `1/(n!2^n)` (B) `2^n/n!` (C) `2^(n-1)/n!` (D) `1/(n!2^(n-1)`

Promotional Banner

Topper's Solved these Questions

  • Binomial Theorem for Positive Integrel Index

    A DAS GUPTA|Exercise Exercise|113 Videos
  • Application of dy/dx

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos

Similar Questions

Explore conceptually related problems

Sum of the series S_(n) =(n) (n) + (n-1) (n+1) + (n-2) (n+2) + …+ 1(2n-1) is

Find the sum of the series: 1.n+2.(n-1)+3.(n-2)+...+(n-1).2+n.1

Find the sum of the series 1xx n+2(n-1)+3xx(n-2)+...+(n-1)xx2+n xx1

The sum of the series 1+(1)/(2) ""^(n) C_1 + (1)/(3) ""^(n) C_(2) + ….+ (1)/(n+1) ""^(n) C_(n) is equal to

The sum of the series: (1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+...+(1)/(log_(2n)4) is (n(n+1))/(2) (b) (n(n+1)(2n+1))/(12) (c) (n(n+1))/(4) (d) none of these

The arithmetic mean of the series 1,2,4,8,16,....2^(n) is (2^(n)-1)/(n+1) (b) (2^(n)+1)/(n) (c) (2^(n)-1)/(n) (d) (2^(n+1)-1)/(n+1)

The sum of n terms of the series 5/1.2.1/3+7/2.3.1/3^2+9/3.4.1/3^3+11/4.5.1/3^4+.. is (A) 1+1/2^(n-1).1/3^n (B) 1+1/(n+1).1/3^n (C) 1-1/(n+1).1/3^n (D) 1+1/2n-1.1/3^n

Find the sum of n terms of the series (1)/(2*4)+(1)/(4*6)+... (A) (n)/(n+1) (B) (n)/(4(n+1)) (C) (1)/((2n)(2n+2))( D) )(1)/(2^(n)(2^(n)+2))

A DAS GUPTA-Binomial Theorem for Positive Integrel Index-Exercise
  1. Prove that the greatest coefficient in the expansion of (1+x)^(2n) is...

    Text Solution

    |

  2. Find the sum : ""^(2n+1)C0+""^(2n+1)C1+""^(2n+1)C2+...+""^(2n+1)Cn.

    Text Solution

    |

  3. The sum of the series 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+…..+1/((n...

    Text Solution

    |

  4. Find the sum :1/2*""^(n)C0+""^(n)C1+2*""^(n)C2+2^2*""^nC3+...+2^(n-1)*...

    Text Solution

    |

  5. Prove that : (1+""^nC1+""^nC2+""^nC3+...+""^nCn)^2=1+""^(2n)C1+""^(2n)...

    Text Solution

    |

  6. If t0,t1, t2,...,tn are the terms in the expansion of (x+a)^n then pro...

    Text Solution

    |

  7. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a0+a1+a2+….

    Text Solution

    |

  8. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a0-a1+a2......

    Text Solution

    |

  9. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a0+a2+a4+…

    Text Solution

    |

  10. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a1+a3+a5+…

    Text Solution

    |

  11. If (1+x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a0+a1+a2...

    Text Solution

    |

  12. If (1+x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a0-a1+a2...

    Text Solution

    |

  13. If (1+2x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a0+a2+a...

    Text Solution

    |

  14. If (1+x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a1+a3+a5...

    Text Solution

    |

  15. The sum of the binomial coefficients in the expansion of (x^2+1/x)^n i...

    Text Solution

    |

  16. The exponent of a binomial exceeds that of another by 3. the sum of th...

    Text Solution

    |

  17. Find the coefficient of x^3 in the expansion of 1+(1+x)+(1+x)^2+(1+x)^...

    Text Solution

    |

  18. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  19. (b) Find the value of sum(r=m)^n .^rCm,n>m

    Text Solution

    |

  20. Evaluate (""^3C3+""^4C3+""^5C3+...+""^nC3)xx(""^nC3+""^nC4+""^nC5+...+...

    Text Solution

    |