Home
Class 12
MATHS
Prove that : (1+""^nC1+""^nC2+""^nC3+......

Prove that : `(1+""^nC_1+""^nC_2+""^nC_3+...+""^nC_n)^2=1+""^(2n)C_1+""^(2n)C_2+""^(2n)C_3+...+""^(2n)C_(2n)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • Binomial Theorem for Positive Integrel Index

    A DAS GUPTA|Exercise Exercise|113 Videos
  • Application of dy/dx

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos

Similar Questions

Explore conceptually related problems

Prove that ""^nC_0+3*""^nC_1+5*""^nC_2+...+(2n+1)""^nC_n=(n+1)2^(n)

Prove that ""^nC_0+2*""^nC_1+3*""^nC_2+...+(n+1)""^nC_n=(n+2)2^(n-1)

Prove that ""^nC_0-2*""^nC_1+3*""^nC_2-...+(-1)""^n(n+1)""^nC_n=0

Prove that (""^nC_1)/(""^nC_0)+2*(""^nC_2)/(""^nC_1)+3*(""^nC_3)/(""^nC_2)+...+n*(""^nC_n)/(""^nC_(n-1))=frac{n(n+1)}{2}

Prove that "^nC_r + 2. ^nC_(r-1) + ^nC_(r-2) = ^(n+2)C_r

Prove that ^nC_0-^nC_1+^nC_2-^nC_3+....+(-1)^r ^C_r+....=(-1)^(r-1) ^(n-1)C_(r-1)

Prove that: .^(n-1)C_3+^(n-1)C_4gt^nC_3, if ngt7

Find the sum : 1/2*""^(n)C_0+""^(n)C_1+2*""^(n)C_2+2^2*""^nC_3+...+2^(n-1)*""^(n)C_n .

Prove that 2*""^nC_0+2^2*(""^nC_1)/2+2^3*(""^nC_2)/3+...2^(n+1)*(""^nC_n)/(n+1)=(3^(n+1)-1)/(n+1)

Show that : ""^nC_0*m-""^nC_1*(m-1)+""^nC_2*(m-2)-...+(-1)^n*""^nC_n*(m-n)=0

A DAS GUPTA-Binomial Theorem for Positive Integrel Index-Exercise
  1. The sum of the series 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+…..+1/((n...

    Text Solution

    |

  2. Find the sum :1/2*""^(n)C0+""^(n)C1+2*""^(n)C2+2^2*""^nC3+...+2^(n-1)*...

    Text Solution

    |

  3. Prove that : (1+""^nC1+""^nC2+""^nC3+...+""^nCn)^2=1+""^(2n)C1+""^(2n)...

    Text Solution

    |

  4. If t0,t1, t2,...,tn are the terms in the expansion of (x+a)^n then pro...

    Text Solution

    |

  5. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a0+a1+a2+….

    Text Solution

    |

  6. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a0-a1+a2......

    Text Solution

    |

  7. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a0+a2+a4+…

    Text Solution

    |

  8. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a1+a3+a5+…

    Text Solution

    |

  9. If (1+x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a0+a1+a2...

    Text Solution

    |

  10. If (1+x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a0-a1+a2...

    Text Solution

    |

  11. If (1+2x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a0+a2+a...

    Text Solution

    |

  12. If (1+x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a1+a3+a5...

    Text Solution

    |

  13. The sum of the binomial coefficients in the expansion of (x^2+1/x)^n i...

    Text Solution

    |

  14. The exponent of a binomial exceeds that of another by 3. the sum of th...

    Text Solution

    |

  15. Find the coefficient of x^3 in the expansion of 1+(1+x)+(1+x)^2+(1+x)^...

    Text Solution

    |

  16. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  17. (b) Find the value of sum(r=m)^n .^rCm,n>m

    Text Solution

    |

  18. Evaluate (""^3C3+""^4C3+""^5C3+...+""^nC3)xx(""^nC3+""^nC4+""^nC5+...+...

    Text Solution

    |

  19. The value of ^n C1+^(n+1)C2+^(n+2)C3++^(n+m-1)Cm is equal to ^m+n C(n-...

    Text Solution

    |

  20. Prove that ""^(n+1)C2+2*sum(k=2)^n""^kC2=sum(k=1)^nk^2

    Text Solution

    |