Home
Class 12
MATHS
If t0,t1, t2,...,tn are the terms in the...

If `t_0,t_1, t_2,...,t_n` are the terms in the expansion of `(x+a)^n` then prove that `(t_0-t_2+t_4-...)^2+(t_1-t_3+t_5-...)^2=(x^2+a^2)^n`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • Binomial Theorem for Positive Integrel Index

    A DAS GUPTA|Exercise Exercise|113 Videos
  • Application of dy/dx

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos

Similar Questions

Explore conceptually related problems

If T_(0),T_(1),T_(2),...,T_(n) represent the terms in the expansion of (x+a)^(n), then find the value of (T_(0)-T_(2)+T_(4)-...)^(2)+(T_(1)-T_(3)+T_(5)-...)^(2)n in N

If t_r is the rth term is the expansion of (1+a)^n , in ascending power of a , prove that r (r +1) t_(r+2) = (n - r + 1) (n - r) a^2 t_r

If T_n = sin^(n)theta + cos^(n)theta then prove that (T_5 -T_3): (T_7- T_5) = T_1 :T_3 .

If T_(n)=sin^(n)x+cos^(n)x, prove that 2T_(6)-3T_(4)+1=0

Write the indicated terms in each of the following sequences whose nth terms are: t_(n)=n^(2)(n+1):t_(4),t_(5)

Write the indicated terms in each of the following sequences whose nth terms are: t_(n)=n^(2)+1:t_(1),t_(2),t_(3)

A DAS GUPTA-Binomial Theorem for Positive Integrel Index-Exercise
  1. Find the sum :1/2*""^(n)C0+""^(n)C1+2*""^(n)C2+2^2*""^nC3+...+2^(n-1)*...

    Text Solution

    |

  2. Prove that : (1+""^nC1+""^nC2+""^nC3+...+""^nCn)^2=1+""^(2n)C1+""^(2n)...

    Text Solution

    |

  3. If t0,t1, t2,...,tn are the terms in the expansion of (x+a)^n then pro...

    Text Solution

    |

  4. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a0+a1+a2+….

    Text Solution

    |

  5. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a0-a1+a2......

    Text Solution

    |

  6. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a0+a2+a4+…

    Text Solution

    |

  7. If (1+x-x^2)^10/(1+x^2)=a0+a1x+a2x^2+...+anx^n+… then find a1+a3+a5+…

    Text Solution

    |

  8. If (1+x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a0+a1+a2...

    Text Solution

    |

  9. If (1+x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a0-a1+a2...

    Text Solution

    |

  10. If (1+2x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a0+a2+a...

    Text Solution

    |

  11. If (1+x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a1+a3+a5...

    Text Solution

    |

  12. The sum of the binomial coefficients in the expansion of (x^2+1/x)^n i...

    Text Solution

    |

  13. The exponent of a binomial exceeds that of another by 3. the sum of th...

    Text Solution

    |

  14. Find the coefficient of x^3 in the expansion of 1+(1+x)+(1+x)^2+(1+x)^...

    Text Solution

    |

  15. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  16. (b) Find the value of sum(r=m)^n .^rCm,n>m

    Text Solution

    |

  17. Evaluate (""^3C3+""^4C3+""^5C3+...+""^nC3)xx(""^nC3+""^nC4+""^nC5+...+...

    Text Solution

    |

  18. The value of ^n C1+^(n+1)C2+^(n+2)C3++^(n+m-1)Cm is equal to ^m+n C(n-...

    Text Solution

    |

  19. Prove that ""^(n+1)C2+2*sum(k=2)^n""^kC2=sum(k=1)^nk^2

    Text Solution

    |

  20. If (1+x)^n=C0+C1x+C2x^2+...+Cnx^n , find the sum of the following seri...

    Text Solution

    |