Home
Class 12
MATHS
The exponent of a binomial exceeds that ...

The exponent of a binomial exceeds that of another by 3. the sum of the binomial coefficients in expansions of both binomial taken together is 144. find the smaller of the two exponents.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • Binomial Theorem for Positive Integrel Index

    A DAS GUPTA|Exercise Exercise|113 Videos
  • Application of dy/dx

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos

Similar Questions

Explore conceptually related problems

Sum of first half binomial coefficients

What is the sum of the binomial coefficients in the expansion of (1+x)^(50)

The sum of the binomial coefficients in the expansion of (x^2+1/x)^n is 1024. find the coefficient of x^11 in the binomial expansion.

If n in N , then the sum of the coefficients in the expansion of the binomial (5 x - 4y)^(n) , is

Find out the sum of the coefficients in the expansion of the binomial ( 5p-4q)^(n), where n is a tive integer.

How to find the sum of all coefficients in the binomial expansion.

Sum of binomial coefficients odd binomial coefficients even binomial coefficients

Sum of the products of the binomial coefficients of (1+x)^(n) taken two at a time is

Sum of the products of the binomial coefficients of (1+x)^(n) taken two at a time is

For a positive integer n , if the mean of the binomial coefficients in the expansion of (a+b)^(2n-3) is 16 , then n is equal to:

A DAS GUPTA-Binomial Theorem for Positive Integrel Index-Exercise
  1. If (1+x-x^2)^n/(1+x^2)=a0+a1x+a2x^2+...+a(2n)x^(2n) then find a1+a3+a5...

    Text Solution

    |

  2. The sum of the binomial coefficients in the expansion of (x^2+1/x)^n i...

    Text Solution

    |

  3. The exponent of a binomial exceeds that of another by 3. the sum of th...

    Text Solution

    |

  4. Find the coefficient of x^3 in the expansion of 1+(1+x)+(1+x)^2+(1+x)^...

    Text Solution

    |

  5. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  6. (b) Find the value of sum(r=m)^n .^rCm,n>m

    Text Solution

    |

  7. Evaluate (""^3C3+""^4C3+""^5C3+...+""^nC3)xx(""^nC3+""^nC4+""^nC5+...+...

    Text Solution

    |

  8. The value of ^n C1+^(n+1)C2+^(n+2)C3++^(n+m-1)Cm is equal to ^m+n C(n-...

    Text Solution

    |

  9. Prove that ""^(n+1)C2+2*sum(k=2)^n""^kC2=sum(k=1)^nk^2

    Text Solution

    |

  10. If (1+x)^n=C0+C1x+C2x^2+...+Cnx^n , find the sum of the following seri...

    Text Solution

    |

  11. Prove that ""^nC0+2*""^nC1+3*""^nC2+...+(n+1)""^nCn=(n+2)2^(n-1)

    Text Solution

    |

  12. Prove that ""^nC0+3*""^nC1+5*""^nC2+...+(2n+1)""^nCn=(n+1)2^(n)

    Text Solution

    |

  13. Prove that ""^nC0-2*""^nC1+3*""^nC2-...+(-1)""^n(n+1)""^nCn=0

    Text Solution

    |

  14. If sn=""^nC0+2*""^nC1+3*""^nC2+...+(n+1)*""^nCn then find sum(n=1)^oos...

    Text Solution

    |

  15. Find the sum :1*""^nC0+2*""^nC1+3*""^nC2+4*""^nC3+…, where n is an odd...

    Text Solution

    |

  16. Show that :""^nC0*m-""^nC1*(m-1)+""^nC2*(m-2)-...+(-1)^n*""^nCn*(m-n)=...

    Text Solution

    |

  17. Evaluate sum(r=1)^npr/r*"^nCr where pr denotes the sum of the first r ...

    Text Solution

    |

  18. Prove by binomial expansion that sum(k=1)^nk^2*"^nCk=n(n+1)2^(n-2)

    Text Solution

    |

  19. Evaluate sum(r=0)^n(r+1)^2*"^nCr

    Text Solution

    |

  20. If (1+x)^n=C0+C1x+C2x^2+C3x^3+...+Cnx^n then prove that 2.C0+2^2C1/2+2...

    Text Solution

    |