Home
Class 12
MATHS
Evaluate (""^3C3+""^4C3+""^5C3+...+""^nC...

Evaluate `(""^3C_3+""^4C_3+""^5C_3+...+""^nC_3)xx(""^nC_3+""^nC_4+""^nC_5+...+""^nC_n)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • Binomial Theorem for Positive Integrel Index

    A DAS GUPTA|Exercise Exercise|113 Videos
  • Application of dy/dx

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos

Similar Questions

Explore conceptually related problems

Prove that (""^nC_1)/(""^nC_0)+2*(""^nC_2)/(""^nC_1)+3*(""^nC_3)/(""^nC_2)+...+n*(""^nC_n)/(""^nC_(n-1))=frac{n(n+1)}{2}

Prove that : (1+""^nC_1+""^nC_2+""^nC_3+...+""^nC_n)^2=1+""^(2n)C_1+""^(2n)C_2+""^(2n)C_3+...+""^(2n)C_(2n)

If "^nC_10 = ^nC_5 find "^nC_14

If "^nC_5= ^nC_12 find n.

Prove that ""^nC_0-2*""^nC_1+3*""^nC_2-...+(-1)""^n(n+1)""^nC_n=0

If .^nC_30=^nC_4 , find n

If ""^(n-1)C_(3)+""^(n-1)C_(4)gt""^nC_(3) , then

If .^nC_8=^nC_2 , find .^nC_2

A DAS GUPTA-Binomial Theorem for Positive Integrel Index-Exercise
  1. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  2. (b) Find the value of sum(r=m)^n .^rCm,n>m

    Text Solution

    |

  3. Evaluate (""^3C3+""^4C3+""^5C3+...+""^nC3)xx(""^nC3+""^nC4+""^nC5+...+...

    Text Solution

    |

  4. The value of ^n C1+^(n+1)C2+^(n+2)C3++^(n+m-1)Cm is equal to ^m+n C(n-...

    Text Solution

    |

  5. Prove that ""^(n+1)C2+2*sum(k=2)^n""^kC2=sum(k=1)^nk^2

    Text Solution

    |

  6. If (1+x)^n=C0+C1x+C2x^2+...+Cnx^n , find the sum of the following seri...

    Text Solution

    |

  7. Prove that ""^nC0+2*""^nC1+3*""^nC2+...+(n+1)""^nCn=(n+2)2^(n-1)

    Text Solution

    |

  8. Prove that ""^nC0+3*""^nC1+5*""^nC2+...+(2n+1)""^nCn=(n+1)2^(n)

    Text Solution

    |

  9. Prove that ""^nC0-2*""^nC1+3*""^nC2-...+(-1)""^n(n+1)""^nCn=0

    Text Solution

    |

  10. If sn=""^nC0+2*""^nC1+3*""^nC2+...+(n+1)*""^nCn then find sum(n=1)^oos...

    Text Solution

    |

  11. Find the sum :1*""^nC0+2*""^nC1+3*""^nC2+4*""^nC3+…, where n is an odd...

    Text Solution

    |

  12. Show that :""^nC0*m-""^nC1*(m-1)+""^nC2*(m-2)-...+(-1)^n*""^nCn*(m-n)=...

    Text Solution

    |

  13. Evaluate sum(r=1)^npr/r*"^nCr where pr denotes the sum of the first r ...

    Text Solution

    |

  14. Prove by binomial expansion that sum(k=1)^nk^2*"^nCk=n(n+1)2^(n-2)

    Text Solution

    |

  15. Evaluate sum(r=0)^n(r+1)^2*"^nCr

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2x^2+C3x^3+...+Cnx^n then prove that 2.C0+2^2C1/2+2...

    Text Solution

    |

  17. If (1+x)^n=C0+C1x+C2x^2+C3x^3+...+Cnx^n then prove that C0-1/2C1+1/3C2...

    Text Solution

    |

  18. Prove that 3*""^10C0+3^2*(""^10C1)/2+3^3*(""^10C2)/3+...3^11*(""^10C10...

    Text Solution

    |

  19. Prove that 2*""^nC0+2^2*(""^nC1)/2+2^3*(""^nC2)/3+...2^(n+1)*(""^nCn)/...

    Text Solution

    |

  20. Find the sum sum(k=0)^n("^nCk)/((k+1)(k+2))

    Text Solution

    |