Home
Class 12
MATHS
Show that C0^2-C1^2+C2^2-C3^2+.............

Show that `C_0^2-C_1^2+C_2^2-C_3^2+...........+(-1)^n C_n^2=0` or `(-1)^(n/2)C_(n/2)` according as `n` is odd or even.

Promotional Banner

Topper's Solved these Questions

  • Binomial Theorem for Positive Integrel Index

    A DAS GUPTA|Exercise Exercise|113 Videos
  • Application of dy/dx

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

9. C_{0}-2^2C_{1}+3^2C_{2}-4^2C_{3}+.....+(-1)^n (n+1)^2C_{n} = 0

C0-(C1)/(2)+(C2)/(3)-............+(-1)^(n)(Cn)/(n+1)=(1)/(n+1)

C_(0)-(C_(1))/(2)+(C_(2))/(3)-............(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

Prove that C_(0)2^(2)C_(1)+3C_(2)4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)C_(n)=0 where C_(r)=nC_(r)

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

C_ (0) ^ (2) + 2C_ (1) ^ (2) + 3.C_ (2) ^ (2) + ............ + (n + 1) C_ (n ) ^ (2) =

A DAS GUPTA-Binomial Theorem for Positive Integrel Index-Exercise
  1. If (1+x)^n=sum(r=0)^n Crx^r then prove that sum(r=0)^n (Cr)/((r+1)2^(r...

    Text Solution

    |

  2. Find sum(r=0)^n(r+1)*"^nCrx^r

    Text Solution

    |

  3. Show that C0^2-C1^2+C2^2-C3^2+...........+(-1)^n Cn^2=0 or (-1)^(n/2)C...

    Text Solution

    |

  4. Prove that (""^(2n)C(0))^(2)-(""^(2n)C(1))^(2)+(""^(2n)C(2))^(2)-…+(""...

    Text Solution

    |

  5. Sum of the products of the binomial coefficients C0,C1,C2,......Cn ta...

    Text Solution

    |

  6. Find the sum ^20C10.^15C0+^20C9.^15C1+^20C8.^15C2+....+^20C0.^15C10

    Text Solution

    |

  7. Prove that sum(r=1)^k (-3)^(r-1) "^(3n)C(2r-1) =0 , where k=(3n)/2 and...

    Text Solution

    |

  8. If p+q=1, then show that sum(r=0)^n r^2^n Crp^r q^(n-r)=n p q+n^2p^2do...

    Text Solution

    |

  9. Use a combinatorial argument to prove that (C(n,1))^2+2(C(n,2))^2+3(C...

    Text Solution

    |

  10. Prove that (""^nC1)/(""^nC0)+2*(""^nC2)/(""^nC1)+3*(""^nC3)/(""^nC2)+....

    Text Solution

    |

  11. Given, sn=1+q+q^2++q^n ,Sn=1+(q+1)/2+((q+1)/2)^2++((q+1)/2)^n ,q!=1 p...

    Text Solution

    |

  12. Find the value of sum(p=1)^n(sum(m=p)^n^n Cm^m Cp)dot And hence, find ...

    Text Solution

    |

  13. The value of ^(2n+1)C0^2+^(2n+1)C1^2+^(2n+1)C2^2+....+^(2n+1)Cn^2 is e...

    Text Solution

    |

  14. Find the sum sumsum(0lt=i<jlt=n)^n Ci^n Cj

    Text Solution

    |

  15. If (1 + x + x^(2) + x^(3))^(n) = a(0) + a(1)x + a(2)x^(2)+"……….."a(3n)...

    Text Solution

    |

  16. The coefficient of a^4b^5 in the expansion of (a+b)^9 is .

    Text Solution

    |

  17. The coefficient in the third term of the expansion of (x^2-1/4)^n when...

    Text Solution

    |

  18. Which is larger : (99^(50)+100^(50)) or (101)^(50).

    Text Solution

    |

  19. The sum of the coefficeints of the polynominal (1 + x - 3x^(2))^(2163)...

    Text Solution

    |

  20. The sum of the numerical coefficients in the expansion of (2x+3y)^10 i...

    Text Solution

    |