Home
Class 12
MATHS
Use a combinatorial argument to prove th...

Use a combinatorial argument to prove that `(C(n,1))^2+2(C(n,2))^2+3(C(n,3))^2+...........+n(C(n,n))^2=((2n-1)!)/(((n-1)!)^2)`

Promotional Banner

Topper's Solved these Questions

  • Binomial Theorem for Positive Integrel Index

    A DAS GUPTA|Exercise Exercise|113 Videos
  • Application of dy/dx

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos

Similar Questions

Explore conceptually related problems

c_(1)^(2)+2C_(2)^(2)+3C_(3)^(2)+....+nC_(n)^(2)=((2n-1)!)/ ([(n-1)!^(2)))

Prove by combinatorial argument that .^(n+1)C_(r)=^(n)C_(r)+^(n)C_(r-1)

(C_(1))/(C_(0))+2(C_(2))/(C_(1))+3(C_(3))/(C_(2))+.........+n(C_(n))/(C_(n-1))=(n(n+1))/(2)

prove that :C_(0)^(2)+3C_(1)^(@)+5C_(2)^(2)+...+(2n+1)C_(n)^(2)=((n+1)2n!)/((n!)^(2))

If (1+x)^n=underset(r=0)overset(n)C_(r)x^r then prove that C_(1)^2+2.C_(2)^(2)+3.C_(3)^2 +…….+n.C_(n)^(2)=((2n-1)!/((n-1)!)^2

Prove that ((4n)C_(2n))/((2n)C_(n))=(1.3.5...(4n-1))/([1.3.5...(2n-1)]^(2))

C_(1)+2C_(2)*a+3.C_(3)*a^(2)+........+2n.C_(2n)*a^(2n-1)

Prove that C_(1)^(2)-2*C_(2)^(2)+3*C_(3)^(2)-…-2n*C_(2n)^(2)=(-1)^(n)n*C_(n)

A DAS GUPTA-Binomial Theorem for Positive Integrel Index-Exercise
  1. Prove that sum(r=1)^k (-3)^(r-1) "^(3n)C(2r-1) =0 , where k=(3n)/2 and...

    Text Solution

    |

  2. If p+q=1, then show that sum(r=0)^n r^2^n Crp^r q^(n-r)=n p q+n^2p^2do...

    Text Solution

    |

  3. Use a combinatorial argument to prove that (C(n,1))^2+2(C(n,2))^2+3(C...

    Text Solution

    |

  4. Prove that (""^nC1)/(""^nC0)+2*(""^nC2)/(""^nC1)+3*(""^nC3)/(""^nC2)+....

    Text Solution

    |

  5. Given, sn=1+q+q^2++q^n ,Sn=1+(q+1)/2+((q+1)/2)^2++((q+1)/2)^n ,q!=1 p...

    Text Solution

    |

  6. Find the value of sum(p=1)^n(sum(m=p)^n^n Cm^m Cp)dot And hence, find ...

    Text Solution

    |

  7. The value of ^(2n+1)C0^2+^(2n+1)C1^2+^(2n+1)C2^2+....+^(2n+1)Cn^2 is e...

    Text Solution

    |

  8. Find the sum sumsum(0lt=i<jlt=n)^n Ci^n Cj

    Text Solution

    |

  9. If (1 + x + x^(2) + x^(3))^(n) = a(0) + a(1)x + a(2)x^(2)+"……….."a(3n)...

    Text Solution

    |

  10. The coefficient of a^4b^5 in the expansion of (a+b)^9 is .

    Text Solution

    |

  11. The coefficient in the third term of the expansion of (x^2-1/4)^n when...

    Text Solution

    |

  12. Which is larger : (99^(50)+100^(50)) or (101)^(50).

    Text Solution

    |

  13. The sum of the coefficeints of the polynominal (1 + x - 3x^(2))^(2163)...

    Text Solution

    |

  14. The sum of the numerical coefficients in the expansion of (2x+3y)^10 i...

    Text Solution

    |

  15. If the fifth term of the expansion (a^(2//3)+a^(-1))^n does not contai...

    Text Solution

    |

  16. The sum of the rational terms in the expansion of (sqrt(2)+ root(5...

    Text Solution

    |

  17. Write the middle term in the expansion of (x+1/x)^(10)dot

    Text Solution

    |

  18. If the coefficients of 2nd, 3rd and 4th terms in the expansion of(1+x)...

    Text Solution

    |

  19. If x^r occurs in the expansion of (x+1/x)^n then its coefficient is .

    Text Solution

    |

  20. If the sum of the coefficients in the expansion of (a+b)^n is 4096, th...

    Text Solution

    |