Home
Class 11
MATHS
((n),(1))+((n),(2))+((n),(3))+.............

`((n),(1))+((n),(2))+((n),(3))+...........+((n),(n-1))=`......... .

Text Solution

Verified by Experts

The correct Answer is:
`2^(n) -(1+1)`
`2^n-2`
Promotional Banner

Topper's Solved these Questions

  • OBJECTIVE SECTION AS PER NEW PAPER SCHEME

    KUMAR PRAKASHAN|Exercise Binomial Theorem (True /False Statement)|20 Videos
  • OBJECTIVE SECTION AS PER NEW PAPER SCHEME

    KUMAR PRAKASHAN|Exercise Sequence and Series (True /False Statement)|14 Videos
  • OBJECTIVE SECTION AS PER NEW PAPER SCHEME

    KUMAR PRAKASHAN|Exercise Permutations and Combinations (True /False Statement)|20 Videos
  • MATHEMATICAL REASONING

    KUMAR PRAKASHAN|Exercise QUESTION OF MODULE (Knowledge Test:)|2 Videos
  • PERMUTATIONS AND COMBINATIONS

    KUMAR PRAKASHAN|Exercise PRACTICE WORK |40 Videos

Similar Questions

Explore conceptually related problems

((n),(0))-((n),(1))+((n),(2))-((n),(3))+((n),(4))-((n),(5)).........+(-1)^(n)((n),(n))=....... .

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+.........+(1)/(8n)]=........

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+.......+(1)/(sqrt(n^(2)+(n-1)n))]=.........

Definite integration as the limit of a sum : lim_(ntooo)[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))(1+(3^(2))/(n^(2)))......(1+(n^(2))/(n^(2)))]^(1/n)=.......

if a,a_1,a_2,a_3,.........,a_(2n),b are in A.P. and a,g_1,g_2,............g_(2n) ,b are in G.P. and h is H.M. of a,b then (a_1+a_(2n))/(g_1*g_(2n))+(a_2+a_(2n-1))/(g_2*g_(2n-1))+............+(a_n+a_(n+1))/(g_n*g_(n+1)) is equal

If f(1) = 1, f(n+1)= 2f (n) + 1, n ge 1 then f(n) = .........

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N

Let S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n , then

If (n +1 ) ! = 12 (n-1) ! then n = ........... n in N