Home
Class 11
MATHS
Let alpha=sin^(-1)(36/85), beta=cos^(-1)...

Let `alpha=sin^(-1)(36/85), beta=cos^(-1)(4/5) and gamma=tan^(-1)(8/15)` then

A

`cotalpha+cotbeta+cotgamma=cotalpha cotbeta cotgamma`

B

`tanalphatanbeta+tanbetatangamma+tanalphatangamma=1`

C

`tanalpha+tanbeta+tangamma=tanalphatanbetatangamma`

D

`cotalphacotbeta+cotbetacotgamma+cotalphacotgamma=1`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - II) (MATRIX MATCHING TYPE QUESTIONS)|1 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - II) (LINKED COMPREHENSION TYPE QUESTIONS)|3 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - II) (STRAIGHT OBJECTIVE TYPE QUESTIONS)|22 Videos
  • HYPERBOLIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-II (STRAIGHT OBJECTIVE TYPE QUESTIONS)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta , gamma are the roots of the equation x^(3)+4x+1=0 , then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1) is equal to

Let alpha,beta,gamma be the roots of x^(3)+x+10=0 and alpha_(1)=(alpha+beta)/(gamma^(2)),beta_(1)=(beta+gamma)/(alpha^(2)),gamma_(1)=(gamma+alpha)/(beta^(2)) . Then, the value of (alpha_(1)^(3)+beta_(1)^(3)+gamma_(1)^(3))-(1)/(10)(alpha_(1)^(2)+beta_(1)^(2)+gamma_(1)^(2)) is

If cos alpha + cos beta + cos gamma = 0 sin alpha + sin beta + sin gamma , Prove that cos^(2) alpha + cos^(2) beta + cos^(2) gamma = 3/2 = sin^(2) alpha + sin^(2) beta + sin^(2) gamma .

Statement-I : If f(theta)=(cot theta)/(1+cot theta) and alpha+ beta=(5pi)/(4) then f(alpha) f(beta)=(1)/(2) Statement-II : If alpha+ beta=(pi)/(2) and beta+ gamma= alpha then tan alpha= tan beta+ 2tan gamm Statement-III sin^(2) alpha+ cos^(2) (alpha+ beta)+2 sin alpha beta cos (alpha+beta) is independent of alpha only