Home
Class 11
MATHS
Point P(x, y) satisfying the equation Si...

Point P(x, y) satisfying the equation `Sin^(-1)x+Cos^(-1)y+Cos^(-1)(2xy)=pi/2` lies on

A

the bisector of the first and third quadrant

B

bisector of the second and fourth quadrant.

C

the rectangle formed by the lines `x=pm1 and y=pm1`.

D

a unit circle with centre at the origin.

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II) (LEVEL - II MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|2 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II) (LEVEL - II MATRIX MATCHING TYPE QUSTIONS)|1 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) (LEVEL - I INTEGER TYPE QUESTIONS)|2 Videos
  • HYPERBOLIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-II (STRAIGHT OBJECTIVE TYPE QUESTIONS)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Find the number of ordered pairs (x,y) satisfying the equations sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-(pi)/3

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi then

The equation 2Cos^(-1)x=Cos^(-1)(2x^(2)-1) is satisfied by

The eccentricity of the ellipse given by the locus of the point P(x, y) satisfying the equation sqrt((x-2)^(2)+(y-1)^(2))+sqrt((x+2)^(2)+(y-1)^(2))=8 is

Let (x, y) be such that sin^(-1)(ax)+cos^(-1)(y)+cos^(-1)(bxy)=pi//2 . Match the statements in column I with statements in column II. {:("Column I", "Column II"), ("A) If a = 1 and b = 0, then (x, y)", "p) lies on the circle "x^(2)+y^(2)=1), ("B) If a = 1 and b = 1, then (x, y)", "q) lies on "(x^(2)-1)(y^(2)-1)=0), ("C) If a = 1 and b = 2, then (x, y)", "r) lies on y = x"), ("D) If a = 2 and b = 2, then (x, y)", "s) lies on "(4x^(2)-1)(y^(2)-1)=0):}

The number of solution of (x,y) so that sin^(-1)x+sin^(-1)y=(2pi)/3,cos^(-1)x-cos^(-1)y=-(pi)/3 is

The number of integer x satisfying sin^(-1)abs(x-2)+cos^(-1)(1-abs(3-x))=pi/2 is