Home
Class 11
MATHS
sin h^(-1)(2^((3)/(2))) =...

`sin h^(-1)(2^((3)/(2)))` =

A

`log_(e) (2 + sqrt(18))`

B

`log_(e) (3 + sqrt(8))`

C

`log_(e) (3 - sqrt(8))`

D

`log_(e) (sqrt(8) + sqrt(27))`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • HYPERBOLIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-I (LEVEL-1) (STRAIGHT OBJECTIVE TYPE QUESTIONS)|22 Videos
  • HYPERBOLIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-II (STRAIGHT OBJECTIVE TYPE QUESTIONS)|18 Videos
  • HYPERBOLIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET EXERCISE - I (STRAIGHT OBJECTIVE TYPE QUESTIONS)|20 Videos
  • HEIGHTS AND DISTANCES

    AAKASH SERIES|Exercise PRACTICE SHEET Exercise-I (Level-II) (Straight Objective Type Questions)|13 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following. (v) sin ((pi)/(3) - sin^(-1) ((-1)/(2) ) )

sec h^(2) [tan h^(-1) ((1)/(2))] + "cosec h"^(2) (cot h^(-1) (3)) =

Knowledge Check

  • sin ^(-1) (sqrt(3))/(2) + sin ^(-1) sqrt(2/3)=

    A
    `sin ^(-1) (sqrt(3)+sqrt(2))/(2 sqrt(3))`
    B
    `pi - sin ^(-1) ((sqrt(3)+sqrt(2))/(2sqrt(3)))`
    C
    `- pi - sin ^(-1) ((sqrt(3)+sqrt(2))/(2sqrt(3)))`
    D
    `pi + sin ^(-1) ((sqrt(3)+sqrt(2))/(2sqrt(3)))`
  • sec h^(-1) ((1)/(2)) - "cosec h"^(-1) ((3)/(4)) =

    A
    `log_(e) ((1+ sqrt(3))/(3))`
    B
    `log_(e) ((2 + sqrt(3))/(3))`
    C
    `log_(e) ((2-sqrt(3))/(3))`
    D
    `log_(e) [3 (2 + sqrt(3))]`
  • e^((sec h ^(-1)""(1)/(2)+tan h^(-1)""(1)/(2)+sin h^(-1)""(1)/(2))=

    A
    `(2 + 3 sqrt(3) + 3 sqrt(5) + 3 sqrt(15))/(2)`
    B
    `(3 + 2 sqrt(3) + 3 sqrt(5) + 2 sqrt(15))/(2)`
    C
    `( 2 = 3 sqrt(3) + 4 sqrt(5) + 5 sqrt(15))/(2)`
    D
    `(2 + 3 sqrt(3) - 4 sqrt(5) + 5 sqrt(15))/(2)`
  • Similar Questions

    Explore conceptually related problems

    sec h^(2)[tan h^(-1)((1)/(2))] + "cosec " h^(2) (cot h^(-1)(3)) =

    (d)/(dx) {Sin ^(-1) ((3x)/(2) - (x ^(3))/(2))}=

    The value of sin[(pi)/2-sin^(-1)(-(sqrt(3))/2)]=

    (d)/(dx ) { x sqrt (a ^(2) + x ^(2)) + a ^(2) Sin h ^(-1) ((x )/(a))}=

    sin h^(-1)((x)/(sqrt(1-x^(2)))) =