A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
HYPERBOLIC FUNCTIONS
AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-I (LEVEL-1) (STRAIGHT OBJECTIVE TYPE QUESTIONS)|22 VideosHYPERBOLIC FUNCTIONS
AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-II (STRAIGHT OBJECTIVE TYPE QUESTIONS)|18 VideosHYPERBOLIC FUNCTIONS
AAKASH SERIES|Exercise LECTURE SHEET EXERCISE - I (STRAIGHT OBJECTIVE TYPE QUESTIONS)|20 VideosHEIGHTS AND DISTANCES
AAKASH SERIES|Exercise PRACTICE SHEET Exercise-I (Level-II) (Straight Objective Type Questions)|13 VideosINVERSE TRIGNOMETRIC FUNCTIONS
AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|7 Videos
Similar Questions
Explore conceptually related problems
AAKASH SERIES-HYPERBOLIC FUNCTIONS -LECTURE SHEET EXERCISE - II (STRAIGHT OBJECTIVE TYPE QUESTIONS)
- sin h^(-1)(2^((3)/(2))) =
Text Solution
|
- 2 tan h^(-1) ((1)/(2)) =
Text Solution
|
- If sin h^(-1) (x) = log(e) (5 + sqrt(26)) then x =
Text Solution
|
- If x=tanh^(-1)(y), then log(e )((1+y)/(1-y))=
Text Solution
|
- e^(sin h^(-1) (cot theta))
Text Solution
|
- If sin h^(-1) (2) + sin h^(-1) (3) = x then cos h(x) =
Text Solution
|
- tan h^(-1) ((1)/(4)) + cot h^(-1) (4) =
Text Solution
|
- sec h^(-1) ((1)/(2)) - "cosec h"^(-1) ((3)/(4)) =
Text Solution
|
- sin h (cos h^(-1) x) =
Text Solution
|
- For 0 lt x le pi, sinh^(-1) (cotx)=
Text Solution
|
- log[(x-1)+sqrt(x^(2)-2x)], x ge 2, is equal to
Text Solution
|
- sec h^(2) [tan h^(-1) ((1)/(2))] + "cosec h"^(2) (cot h^(-1) (3)) =
Text Solution
|
- If x gt 0 then tan h^(-1) ((x^(2) - 1)/(x^(2) + 1)) =
Text Solution
|
- sin h^(-1) (2 alpha) = 2 cos h^(-1) (beta) then
Text Solution
|
- If 2"sinh"^(-1)((a)/(sqrt(1-a^(2))))=log((1+x)/(1-x)) then x =
Text Solution
|
- sec h^(-1) (cos theta) =
Text Solution
|
- Observe the following statements: Assertion (A): If "sinh"^(-1) sqrt...
Text Solution
|