Home
Class 11
MATHS
If f(x) = {:{(x^(alpha)logx,","xgt 0),(0...

If `f(x) = {:{(x^(alpha)logx,","xgt 0),(0,","x=0):}` and Rolle' theorem is applicable to f(x) for `x in [0,1]` then `alpha` may be equal to

A

`-2`

B

`-1`

C

0

D

`1//2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise LECTURE SHEET(EXERCISE-I (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|1 Videos
  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I (LEVEL-I))|41 Videos
  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II (PRACTICE SHEET )(ADVANCED)) (INTEGER TYPE QUESTIONS)|3 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - II) (LEVEL - II) (Linked Comprehension Type Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(x,olexle1),(2-x,1lexle2'):} then Rolle's theorem is not applicable to f(x) because

Define f(x)={{:(x",",0lexle1),(2-x,,1lexle2):} then Rolles theorem is not applicable to f(x) because

If f(x) = x/(1 + |x|) for x in R then f(0) is equal to

The constant 'c' of Rolle's theorem for the function f(x) =sin x in [0,2pi] is

If f(x)=e^(2x).logx,(x gt 0) then find f'(x) .

If f(x)=sin(logx),(x gt 0) then find f'(x)

Verify Rolle's theorem for the function f(x)=x(x+3)e^(-x/2) in [-3,0].