Home
Class 11
MATHS
If f(x) = cos x,0 le x le ( pi )/( 2), ...

If f(x) ` = cos x,0 le x le ( pi )/( 2)`, then the real number 'c' of the mean value theorem is

A

`( pi )/( 6)`

B

`( pi )/( 4)`

C

`sin^(-1) ((2)/( pi ))`

D

`cos ^(-1)((2)/( pi ))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise LECTURE SHEET(EXERCISE-I (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|1 Videos
  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I (LEVEL-I))|41 Videos
  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II (PRACTICE SHEET )(ADVANCED)) (INTEGER TYPE QUESTIONS)|3 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - II) (LEVEL - II) (Linked Comprehension Type Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If f(x) = cos x , a = ( - pi )/(2) then the value of 'c' of Rolle's theorem in (a,b)

If 0 le x le 2 pi and |cos x| le sin x , then

If 4 sin^(2)x-8 sinx+3 le 0,0 le x le 2pi, x in

Consider two funtions f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),( Sinx, 0le xle pi ):} where [.] denotes the greatest functions The exhaustive domain of g(f(x)) is

Rolle's theorem holds for the function x^(3) + bx^(2) + cx, 1 le x le2 at the point (4)/(3) , then vaue of b and c are

If 0 le x le 2 pi , then the number of solution of 3 (sin x + cos x) - 2 (sin^(3)x + cos^(3) x) = 8 is

Define f(x) = (1)/(2)[|sinx|+sin x], 0 lt x le 2pi . Then f is