Home
Class 11
MATHS
if the functions f(x) and phi (x ) are c...

if the functions f(x) and `phi (x )` are continuous in [a,b] and differentiable in (a,b) , then the value of 'c' for the pair of function `f (x) = sqrt(x ) , phi (x) = ( 1)/( sqrt(x))` is

A

`sqrt(a)`

B

`sqrt(b)`

C

`sqrt(ab)`

D

`- sqrt(ab)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise LECTURE SHEET(EXERCISE-I (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|1 Videos
  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I (LEVEL-I))|41 Videos
  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II (PRACTICE SHEET )(ADVANCED)) (INTEGER TYPE QUESTIONS)|3 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - II) (LEVEL - II) (Linked Comprehension Type Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If the function f(x) and phi (x) are continuous in [a,b] and differentiable in (a,b) , then the value of 'c' for the pair of functions f(x) = e^(x), phi (x) = e^(-x) is

Range of the function f(x)=sqrt([x]-x) is

The domain of the function f(x) =sqrt(sin^(-1)x) is:

The domain of the function f(x)=sqrt((x-2)/(x+2))+sqrt((1-x)/(1+x)) is

The domain of the function f(x)=sqrt(x-1)+sqrt(6-x) is