Home
Class 11
MATHS
Let tanx-tan^(2)xgt0 and |2sinx|lt1. The...

Let `tanx-tan^(2)xgt0` and `|2sinx|lt1`. Then the intersection of which of the following two sets satisfies both the inequalities?

A

`x gtn pi, n in Z`

B

`x gtnpi-pi//6, n inZ`

C

`n ltn pi -pi//4, n inZ`

D

`x lt n pi +pi//6, n in Z`

Text Solution

Verified by Experts

The correct Answer is:
A, D
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC EQUATIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE-II (Straight objectives Types Questions)|40 Videos
  • TRIGNOMETRIC EQUATIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE-II (More than one correct Answer Types Questions)|4 Videos
  • TRIGNOMETRIC EQUATIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|2 Videos
  • TRANSFORMATIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I LEVEL-I Straight Objective Type Questions)|41 Videos
  • TRIGONOMERTIC RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|77 Videos

Similar Questions

Explore conceptually related problems

int (tanx)/(1+tan^(2)x)dx=

I=int_(0)^(1)e^(x^(2))dx satisfies the inequality

If 0ltxltpi and cosx+sinx=1/2 then tanx=

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is

The solution set of the inequation 3^x+3^(1-x) -4 lt 0 , is

The values of parameter a for which the point of minimum of the function f(x)=1+a^(2)x-x^(3) satisfies the inequality (x^(2)+x+2)/(x^(2)+5x+6)lt0 are