Home
Class 11
MATHS
If a+ib=c+id, then...

If `a+ib=c+id`, then

A

`a^(2)+c^(2)=0`

B

`b^(2)+c^(2)=0`

C

`b^(2)+d^(2)=0`

D

`a^(2)+b^(2)=c^(2)+d^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    KUMAR PRAKASHAN|Exercise (Questions of Module) (Knowledge Test :)|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMPLAR PROBLEMS (Match Column & Short Questions)|15 Videos
  • BINOMIAL THEOREM

    KUMAR PRAKASHAN|Exercise QUESTION OF MODULE|7 Videos
  • CONIC SECTIONS

    KUMAR PRAKASHAN|Exercise QUESTION OF MODULE|9 Videos

Similar Questions

Explore conceptually related problems

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

If |a|=1,|b|=3 and |c|=5 , then the value of [a-b" "b-c" "c-a] is

If (a+ib)(c+id)(e+if)(g+ih) = A + iB , then show that (a^(2) + b^(2))(c^(2) + d^(2))(e^(2) + f^(2)) (g^(2) + h^(2)) = A^(2) + B^(2)

If A,B and C are angle of a triangle of a triangle ,the value of |{:(e^(2iA),e^(-iC),e^(-iB)),(e^(-iC),e^(2iB),e^(-iA)),(e^(-iB),e^(-iA),e^(2iC)):}| is (where i= sqrt(-1))

If z = x + iy and x +iy= (a+ib)/(a-ib) then x^2+y^2=1 .

A particle of mass m id driven by a machine that delivers a constant power k watts . If the particle starts from at rest the force on the particle at time t is :

Assertion: If I is the incentre of /_\ABC, then |vec(BC)|vec(IA)+|vec(CA)|vec(IB)+|vec(AB)|vec(IC)=0 Reason: If O is the origin, then the position vector of centroid of /_\ABC is (vecOA)+vec(OB)+vec(OC))/3 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If a!=b!=c\ and\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then A. a+b+c=0 B. a b+b c+c a=0 C. a^2+b^2+c^2=a b+b c+c a D. a b c=0

If a, b and c are real numbers , and Delta=|{:(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a):}| Show that either a+b+c=0 or a=b=c