Home
Class 11
MATHS
If f(z)=(7-z)/(1-z^(2)) where z=1+2i, th...

If `f(z)=(7-z)/(1-z^(2))` where `z=1+2i`, the `|f(z)|` is equal to

A

`(|z|)/(2)`

B

|z|

C

`2|z|`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    KUMAR PRAKASHAN|Exercise (Questions of Module) (Knowledge Test :)|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMPLAR PROBLEMS (Match Column & Short Questions)|15 Videos
  • BINOMIAL THEOREM

    KUMAR PRAKASHAN|Exercise QUESTION OF MODULE|7 Videos
  • CONIC SECTIONS

    KUMAR PRAKASHAN|Exercise QUESTION OF MODULE|9 Videos

Similar Questions

Explore conceptually related problems

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If z=(1)/((2+3i)^(2)) then |z|=...

If z=(1+7i)/((2-i)^(2) then......

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If z = (sqrt(3)+i)/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If arg ((z_(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z_(1)|=3 , then |z_(1)| equals to

If z=(1+2i)/(1-(1-i)^(2)) then arg (z).....

If z_1 and bar z_1 represent adjacent vertices of a regular polygon of n sides where centre is origin and if (Im(z))/(Re(z)) = sqrt(2) - 1 , then n is equal to:

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to