Home
Class 12
MATHS
Prove that |{:(a+1,1,1),(1,b+1,1),(1,1,c...

Prove that `|{:(a+1,1,1),(1,b+1,1),(1,1,c+1):}|=abc(1/a+1/b+1/c+1)`

Text Solution

Verified by Experts

The correct Answer is:
abc+bc+ca+ab
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Short Answer Type Questions)|17 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (Long Answer Type Questions)|6 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Textbook based MCQs|42 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos

Similar Questions

Explore conceptually related problems

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a)

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(1,1,1),(a,b,c),(a^3,b^3,c^3):}|=(a-b)(b-c)(c-a)(a+b+c)

Evaluate Delta=|{:(1,a,bc),(1,b,ca),(1,c,ab):}|

If a,b,c and d are the roots of the equation x^(4)+2x^(3)+4x^(2)+8x+16=0 the value of the determinant |{:(1+a,1,1,1),(1,1+b,1,1),(1,1,1+c,1),(1,1,1,1+d):}| is

If the value of the determinant |{:(a,1,1),(1,b,1),(1,1,c):}| is positive then

Let a,b,c be such that b(a+c) ne 0 . If |{:(,a,a+1,a-1),(,-b,b+1,b-1),(,c,c-1,c+1):}|+|{:(,a+1,b+1,c-1),(,a-1,b-1,c+1),(,(-1)^(n+2)a,(-1)^(n+1)b,(-1)^(n)c):}|=0 , Then the value of 'n' is:

Prove that: {:|(1,a, a^2-bc), (1,b,b^2-ca),(1,c,c^2-ab)|:}=0

If A,B and C are the angle of a non-right angled Delta ABC the value of |{:(tanA,1,1),(1,tanB,1),(1,1,tanC):}| is

Without expanding the determinant prove that |{:(a,a^2,bc),(b,b^2,ca),(c,c^2,ab):}|=|{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}|

If ane0, bne0,cne0 " "and " |{:(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c):}| =0 the value of |a^(-1)+b^(-1)+c^(-1)| is equal to

KUMAR PRAKASHAN-DETERMINANTS -Textbook Illustrations for Practice work
  1. Prove that {:[( b+c,a,a), ( b,c+a,b),( c,c,b+a) ]:}

    Text Solution

    |

  2. If x,y,z are different and Delta=|{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z...

    Text Solution

    |

  3. Prove that |{:(a+1,1,1),(1,b+1,1),(1,1,c+1):}|=abc(1/a+1/b+1/c+1)

    Text Solution

    |

  4. Find the area of the triangle whose vertices are (3,8),(-4,2) and (5,1...

    Text Solution

    |

  5. Find the equation of the line joining A(1,3) and B(0,0) using determin...

    Text Solution

    |

  6. Find the minor of elements 6 in the determinant Delta=|{:(1,2,3),(4,...

    Text Solution

    |

  7. Find minors and cofactors of all the elements of the determinant |{:(1...

    Text Solution

    |

  8. Find minors and cofactors of the elements a(11),a(21) in the determina...

    Text Solution

    |

  9. Find minors and cofactors of the elements of the determinant |{:(2,-3,...

    Text Solution

    |

  10. Find adj A for A = {:[( 2,3),( 1,4) ]:}

    Text Solution

    |

  11. If A=[{:(1,3,3),(1,4,3),(1,3,4):}] , then verify that A adjA=|A|I. Als...

    Text Solution

    |

  12. If A=[{:(2,3),(1,-4):}] and B=[{:(1,-2),(-1,3):}] then verify that (AB...

    Text Solution

    |

  13. Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^2-4A...

    Text Solution

    |

  14. Solve the system of equations {:(2x+5y=1),(3x+2y=7):},

    Text Solution

    |

  15. Solve system of linear equations , using matrix method if exists 4x-...

    Text Solution

    |

  16. The sum of three numbrs is 6. If we multiply third number by 3 and add...

    Text Solution

    |

  17. If a,b,c are positive and unequal, show that value of the determinant ...

    Text Solution

    |

  18. If a,b,c are in A.P find value of |{:(2y+4,5y+7,8y+a),(3y+5,6y+8,9y+...

    Text Solution

    |

  19. show that [((x+y)^2 , zx , zy),( zx, (z+y)^2 ,xy),(zy,xy,(z+x)^2)]=2...

    Text Solution

    |

  20. Solve following system using matrix x-y+2z =1 , 2y -3z =1, 3x...

    Text Solution

    |