Home
Class 11
MATHS
A=[{:(1,2,2),(2,1,2),(2,2,1):}], then A^...

`A=[{:(1,2,2),(2,1,2),(2,2,1):}]`, then `A^(3) - 4A^(2) -6A` is equal to

A

0

B

A

C

`-A`

D

I

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH SERIES|Exercise ALGEBRA OF MATRICES - EXERCISE - II|34 Videos
  • MATRICES

    AAKASH SERIES|Exercise ALGEBRA OF MATRICES -PRACTICE EXERCISE|41 Videos
  • MATRICES

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|51 Videos
  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos

Similar Questions

Explore conceptually related problems

If A={:[(1,0,-2),(-2,-1,2),(3,4,1)]:} then A^(-1) =

If A=[(1,-2,3),(0,-1,4),(-2,2,1)] then (A^(T))=

IF A=[{:(1,2,2),(2,1,2),(2,2,1):}] then show that A^2-4A-5I=O .

IF A=[{:(1,2,2),(2,1,2),(2,2,1):}] then show that A^2=4A-5I=O .

If A=[(1,1,3),(5,2,6),(-2,-1,-3)] then A^(3)=

If A = [(1,2,2),(2,1,2),(2,2,1)] then show that A^(2)-4A-5I = O .

If A=[(1,4,2),(2,-1,4),(-3,7,-6)] then A has

|(1,4,2),(2,-1,4),(-3,7,-6)|=