Home
Class 11
MATHS
If (a^(2)+b^(2))/(a^(2)-b^(2))=(sinC)/(s...

If `(a^(2)+b^(2))/(a^(2)-b^(2))=(sinC)/(sin(A-B))` , then S.T . `DeltaABC` is either isoceles or right angled triangle .

Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise EXERCISE - 9.1 ( LONG ANSWER QUESTIONS)|28 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise EXERCISE - 9.2 (VERY SHORT ANSWER QUESTIONS)|12 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise EXERCISE - 9.1 ( VERY SHORT ANSWER QUESTIONS|17 Videos
  • PLANES

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|30 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISES|55 Videos

Similar Questions

Explore conceptually related problems

If ( a^(2) + b^(2))/( a^(2) - b^(2)) = ( sin C)/( sin (A- B)) then triangle ABC is

In DeltaABC=(b^(2)+c^(2))/(b^(2)-c^(2))=(Sin(B+C))/(Sin(B-C)) then the triangle is

In a triangle ABC if (a^(2) + b^(2))/(a^(2) - b^(2)) sin (A - B) = 1 and the triangle is not right angled, then cos (A - B) =

In DeltaABC show that (b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In a DeltaABC " if " a cosA=bcosB the prove that triangle is either isosceles or right angled .

In a DeltaABC" show that "(b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In a /_\ABC if a^(2)+b^(2)+c^(2)=8R^(2) then show that /_\ABC is a right angled triangle.