A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
PROPERTIES OF TRIANGLES
AAKASH SERIES|Exercise PRACTICE EXERCISE|132 VideosPROPERTIES OF TRIANGLES
AAKASH SERIES|Exercise LECTURE SHEET EXERCISE - I ( Straight Objective Type Questions ) |58 VideosPROPERTIES OF TRIANGLES
AAKASH SERIES|Exercise EXERCISE - 1|98 VideosPLANES
AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|30 VideosPROPERTIES OF VECTORS
AAKASH SERIES|Exercise PRACTICE EXERCISES|55 Videos
Similar Questions
Explore conceptually related problems
AAKASH SERIES-PROPERTIES OF TRIANGLES-EXERCISE - II
- Two sides of a triangles are given by the roots of the equation x^(2)...
Text Solution
|
- In Delta ABC, if tan B tan C+tan C tan A+tan A tan B=sqrt3 tan A tan B...
Text Solution
|
- IF Delta ABC, if cot""A/2=(b+c)/a, then the triangle is
Text Solution
|
- In Delta ABC if a^2+b^2+c^2=ca+ab sqrt3 then the triangle is
Text Solution
|
- In Delta ABC, if cos A cos B+ sin A sin B sin C=1, then the triangle i...
Text Solution
|
- The perimeter of a triangle is 16 cm. One of the sides is of length 6 ...
Text Solution
|
- sum (a)/( s-a) (tan ""(B)/(2) - tan ""(C )/(2)) =
Text Solution
|
- In Delta ABC, sum (a+b) tan ((A-B)/2)=
Text Solution
|
- In Delta ABC sum(sin^2A+sinA+1)/(sinA) is always greater than
Text Solution
|
- In Delta ABC, sum ( tan ""(A)/(2))/( (s-b)(s-c))=
Text Solution
|
- In a DeltaABC,sum(b+c)tan""A/2tan((B-C)/2)=
Text Solution
|
- If b=3 , c =2 , A = 120 ^(@) then length of bisector of angle A is
Text Solution
|
- If a =7, b= 8 , c= 9 then the length of the line joining B to the mi...
Text Solution
|
- If b^(2) +c^(2) = 3a^(2) then cot B +cot C -cot A=
Text Solution
|
- If the hypotenuse of a right angled triangle is four times the length ...
Text Solution
|
- In Delta ABC, if r1=8, r2=12, r3=24, then a=
Text Solution
|
- If r : R r1 = 2: 5 : 12 then angle A =
Text Solution
|
- In /\ABC prove that (r1)/(bc) + (r2)/(ca) + (r3)/(ab) = 1/r - 1/(2R).
Text Solution
|
- If r r2 = r1 r3 " then " angle A + angle C =
Text Solution
|
- If (r2 -r1 ) = 2r2r3 " then " angle A =
Text Solution
|