Home
Class 11
MATHS
Sin^(-1)(xsqrt(1-y^(2))+ysqrt(1-x^(2)))=...

`Sin^(-1)(xsqrt(1-y^(2))+ysqrt(1-x^(2)))=`

A

`sin^(-1)x+sin^(-1)sqrt(x)`

B

`sin^(-1)x-sin^(-1)sqrt(x)`

C

`sin^(-1)sqrt(x)-sin^(-1)x`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II LEVEL-II (ADVANCED) SINGLE ASWER TYPE QUESTIONS)|4 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II LEVEL-II (ADVANCED) MORE THAN ONE CORRECT ASWER TYPE QUESTIONS)|2 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I LEVEL-II (ADVANCED) INTEGER ANSWER TYPE QUESTIONS)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos

Similar Questions

Explore conceptually related problems

Sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

If Sin^(-1)(x)+Sin^(-1)(y)+Sin^(-1)(z) = pi , prove that xsqrt(1-x^(2)) + ysqrt(1-y^(2)) +zsqrt(1-z^(2)) = 2xyz .

If Sin^(-1)x+Sin^(-1)y+Sin^(-1)z=pi then prove that n xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xy z

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

"Tan"^(-1)(yz)/(xsqrt(x^(2)+y^(2)+z^(2)))+"Tan"^(-1)(zx)/(ysqrt(x^(2)+y^(2)+z^(2)))+"Tan"^(-1)(xy)/(zsqrt(x^(2)+y^(2)+z^(2)))=

tan^(-1)((yz)/(xsqrt(x^(2)+y^(2)+z^(2))))+tan^(-1)((zx)/(ysqrt(x^(2)+y^(2)+z^(2)))) +tan^(-1)((xy)/(zsqrt(x^(2)+y^(2)+z^(2))))=

2Cos^(-1)x=Sin^(-1)(2xsqrt(1-x^(2))) is valid for