Home
Class 12
MATHS
If y=(tan^(-1)x)^2, show that (x^2+1)^...

If `y=(tan^(-1)x)^2`, show that
`(x^2+1)^2y_2+2x(x^2+1)y_1=2` .

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    MAXIMUM PUBLICATION|Exercise EXAMPLE|57 Videos
  • DETERMINANTS

    MAXIMUM PUBLICATION|Exercise EXAMPLE|121 Videos

Similar Questions

Explore conceptually related problems

If y=(sin^-1x)^2 , then show that (1-x^2)(d^2y)/(dx^2)-xdy/dx=2

If y=e^(acos^-1x) , then show that (1-x^2)y_2-xy_1-a^2y=0

Given that logy=tan^-1x . Show that (1+x^2)y_2+(2x-1)y_1=0

If y=sin^-1x ,then show that (1-x^2)(d^2y)/dx^2-xdy/dx=0

If y=sin^-1x , prove that (1-x^2)y_2-xy_1=0

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_1-xy=1

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_2-3xy_1-y=0

Let y=(x+sqrt(1+x^2))^m Show that (1+x^2)(d^2y)/dx^2+xdy/dx-m^2y=0 .

Given that logy=tan^-1x . Show that (1+x^2)y_1=y .

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y^2=(sin^(-1)x)^2