Home
Class 12
MATHS
Let y=x^sinx+(sinx)^x . Find dy/dx...

Let `y=x^sinx+(sinx)^x` . Find `dy/dx`

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    MAXIMUM PUBLICATION|Exercise EXAMPLE|57 Videos
  • DETERMINANTS

    MAXIMUM PUBLICATION|Exercise EXAMPLE|121 Videos

Similar Questions

Explore conceptually related problems

If y=sin^-1x ,Find dy/dx

If y=x^(x^x) Find dy/dx .

Given x^y=y^x Find dy//dx .

If xy=e^(x-y) . Find dy/dx .

Let z=sinx-cosx . Find dz/dx .

Let y=(x+sqrt(1+x^2))^m Find dy/dx .

y=tan x+sec x. Find dy/dx .

Consider y=tan^-1sqrt((1+sinx)/(1-sinx)) Find dy/dx .

Differentiate x^sinx+(sinx)^cosx w.r.t.x

u=(sinx)^(tanx) , v=(cosx)^(secx) Find dy//dx . if y=(sinx)^(tanx)+(cosx)^(secx)