Home
Class 12
MATHS
Express the following matrices as the su...

Express the following matrices as the sum of a symmetric and a skew symmetric matrix :
(i) `[{:(3,5),(1,-1):}]` (ii) `[{:(6,-2,2),(-2,3,-1),(2,-1,3):}]` (iii) `[{:(3,3,-1),(-2,-2,1),(-4,-5,2):}]` (iv) `[{:(1,5),(-1,2):}]`

Text Solution

Verified by Experts

The correct Answer is:
(i) `thereforeA=[{:(3,3),(3,-1):}]+[{:(0,2),(-2,0):}]`
(ii) `=[{:(6,-2,2),(-2,3,-1),(2,-1,3):}]+[{:(0,0,0),(0,0,0),(0,0,0):}]`
(iii) `=[{:(3,(1)/(2),-(5)/(2)),((1)/(2),-2,-2),(-(5)/(2),-2,2):}]+[{:(0,(5)/(2),(3)/(2)),(-(5)/(2),0,3),(-(3)/(2),-3,0):}]`
(iv) `=[{:(1,2),(2,2):}]+[{:(0,3),(-3,0):}]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    KUMAR PRAKASHAN|Exercise EXERCISE -3.4|18 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise MISCELLANEOUS EXERCISE -3|15 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise EXERCISE -3.2|22 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos
  • PROBABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 13 (Section - D (Answer the following questions))|2 Videos

Similar Questions

Explore conceptually related problems

Expresss A as the sum of a symmtric and a skew-symmetric matrix, where A=[(3,5),(-1,2)]

Express the matrix [{:(2,3,1),(1,-1,2),(4,1,2):}] as the sum of a symmetric and a skew symmetric matrix.

Express the matrix A=[{:(2,3,4),(5,6,-2),(1,4,5):}] as the sum of a symmetric and a skew symmetric matrix .

Express the matrix A=[{:(3,3,-1),(-2,-2,1),(-4,-5,2):}] as the sum of a symmetric and a skew symmetric matrix .

Express the matrix B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}] as the sum of a symmetric and a skew symmetric matrix.

Express the matrix A= [{:(3,-2,1),(4,0,6),(-1,2,1):}] as the sum of a symmetric and a skew symmetric matrices.

Find the transpose of each of the following matrices : (i) [{:(5),((1)/(2)),(-1):}] (ii) [{:(1,-1),(2,3):}] (iii) [{:(-1,5,6),(sqrt(3),5,6),(2,3,-1):}]

If A^(-1)=[{:(3,-1,1),(-15,6,-5),(5,-2,2):}] and B=[{:(1,2,-2),(-1,3,0),(0,-2,1):}] then find (AB)^(-1)