Home
Class 12
MATHS
If A=[{:(1,alpha),(0,1):}] then by the ...

If `A=[{:(1,alpha),(0,1):}]` then by the principle of mathematical induction . Prove that `A^(n)=[{:(1,nalpha),(0,1):}],AAn inN`.

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    KUMAR PRAKASHAN|Exercise TEXTBOOK BASED MCQS|43 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise TEXTBOOK ILLUSTRATIONS FOR PRACTICE WORK |28 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise MISCELLANEOUS EXERCISE -3|15 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos
  • PROBABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 13 (Section - D (Answer the following questions))|2 Videos

Similar Questions

Explore conceptually related problems

If A= [[3,-4] , [1,-1]] then by the method of mathematical induction prove that A^n=[[1+2n,-4n] , [n,1-2n]]

By using the principle of mathematical induction , prove the follwing : P(n) :( 1+x)^n gt=1 + nx, x gt (-1) , n in N

By using the principle of mathematical induction , prove the follwing : P(n) : (2n + 7) lt (n+3)^2 , n in N

By using the principle of mathematical induction , prove the follwing : P(n) + 1+3+5+……….+(2n-1) = n^2 , n in N

By using the principle of mathematical induction , prove the follwing : P(n) : 2 + 4+ 6+ …..+ 2n =n(n+1) , n in N

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Prove the following by using the principle of mathematical induction for all n in N (1+x)^n lt= (1+nx)

Prove the following by using the principle of mathematical induction for all n in N 3^n gt 2^n

Using the principle of mathematical induction to prove that int_(0)^(pi//2)(sin^2nx)/(sinx)dx=1+(1)/(3)+(1)/(5)+.....+(1)/(2n-1)

Prove the following by using the principle of mathematical induction for all n in N (2n+1) lt 2^n , n >= 3

KUMAR PRAKASHAN-MATRICES -PRACTICE WORK
  1. If A=[{:(1,0),(-1,7):}]andA^(2)=8A+KI then find K.

    Text Solution

    |

  2. Prove that , {[{:(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,...

    Text Solution

    |

  3. If A=[{:(1,alpha),(0,1):}] then by the principle of mathematical indu...

    Text Solution

    |

  4. If A=[{:(0,1,2),(2,-3,0),(1,-1,0):}]andf(x)=x^(3)+4x^(2)-x, then find ...

    Text Solution

    |

  5. If A=[{:(2,3,-4),(5,1,0),(3,-2,5):}]andI=[{:(1,0,0),(0,1,0),(0,0,1):}]...

    Text Solution

    |

  6. Three friends Ram , Shyam and Rahul went to a shop .Ram purchased 12 d...

    Text Solution

    |

  7. Two farmers Ramkishan and Gurpreet singh cultivates only three varieti...

    Text Solution

    |

  8. A=[{:(5,-1),(6,7):}],B=[{:(2,1),(3,4):}]andC=[{:(1,3),(-1,4):}] then ...

    Text Solution

    |

  9. A=[{:(2,3,-1),(1,-2,4):}]andB=[{:(1,4),(2,5),(-1,3):}] then verify tha...

    Text Solution

    |

  10. If A=(1)/(3)[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A A'=A'A=...

    Text Solution

    |

  11. If A=[{:(1,2,5),(5,1,1),(3,0,4):}] then find A-2A'.

    Text Solution

    |

  12. For the matrices A and B, verify that (AB)'=B'A. (i) A=[{:(1),(3),...

    Text Solution

    |

  13. Express the matrix B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}] as the sum of...

    Text Solution

    |

  14. Show that all the diagonals elements of a skew symmetric matrix are ze...

    Text Solution

    |

  15. Prove that if A is a square matrix then ,(i) (A+A') is a symmetric met...

    Text Solution

    |

  16. Express the matrix A=[{:(2,3,4),(5,6,-2),(1,4,5):}] as the sum of a s...

    Text Solution

    |

  17. If a matrix A is a symmetric matrix then show that A^(n) is also a sy...

    Text Solution

    |

  18. Using elementary transformations find the inverse of each of the follo...

    Text Solution

    |

  19. Find the inverse of [{:(7,4),(1,-2):}]

    Text Solution

    |

  20. Find the inverse of each of the following matrices [{:(-1,2),(-3,5):}...

    Text Solution

    |