Home
Class 12
MATHS
A=[{:(4,3),(2,5):}],A^(2)-xA+yI=0. Find...

`A=[{:(4,3),(2,5):}],A^(2)-xA+yI=0`. Find real numbers x and y. where I is a `2xx2` identity matrix.

Text Solution

Verified by Experts

The correct Answer is:
`x=9,y=14`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    KUMAR PRAKASHAN|Exercise TEXTBOOK BASED MCQS|43 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise TEXTBOOK ILLUSTRATIONS FOR PRACTICE WORK |28 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise MISCELLANEOUS EXERCISE -3|15 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos
  • PROBABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 13 (Section - D (Answer the following questions))|2 Videos

Similar Questions

Explore conceptually related problems

Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^2-4A+I=O , where I is 2xx2 identity matrix and O is 2xx2 zero matrix. Using this equation find A^(-1)

If A = [[0, 1],[3,0]]and (A^(8) + A^(6) + A^(4) + A^(2) + I) V= [[0],[11]], where V is a vertical vector and I is the 2xx2 identity matrix and if lambda is sum of all elements of vertical vector V , the value of 11 lambda is

Find the real numbers x and y if (x-iy) (3+5i) is the conjugate of -6 - 24 i .

Let A be a 2 xx 2 matrix with non-zero entries and let A^2=I , where I is a 2 xx 2 identity matrix, Tr(A) = sum of diagonal elements of A, and |A| = determinant of matrix A. Statement 1: Tr(A)=0 Statement 2: |A| =1

A=[{:(1,4),(3,2),(2,5):}]andB=[{:(-1,2),(0,5),(3,1):}] then find the matrix X. where A+B-X=0.0 is a zero matrix.

If A=[1 2 2 2 1-2a2b] is a matrix satisfying the equation AA^T=""9I , where I is 3xx3 identity matrix, then the ordered pair (a, b) is equal to : (1) (2,-1) (2) (-2,""1) (3) (2, 1) (4) (-2,-1)

If A=[{:(1,0,-1),(2,1,3),(0,1,1):}] , then verify that A^(2)+A=A(A+I) where I is 3xx3 unit matrix.

If X=[{:(3,1,-1),(5,-2,-3):}]andY=[{:(2,1,-1),(7,2,4):}] , find (i) X+Y (ii) 2X-3Y (iii) A matrix Z such that X+Y +Z is a zero matrix.

If A=[{:(4,x+2),(2x-3,x+1):}] is symmetric matrix then find x.

Expand (4x - 2y-3z) ^(2) using identity

KUMAR PRAKASHAN-MATRICES -PRACTICE WORK
  1. Show that all the diagonals elements of a skew symmetric matrix are ze...

    Text Solution

    |

  2. Prove that if A is a square matrix then ,(i) (A+A') is a symmetric met...

    Text Solution

    |

  3. Express the matrix A=[{:(2,3,4),(5,6,-2),(1,4,5):}] as the sum of a s...

    Text Solution

    |

  4. If a matrix A is a symmetric matrix then show that A^(n) is also a sy...

    Text Solution

    |

  5. Using elementary transformations find the inverse of each of the follo...

    Text Solution

    |

  6. Find the inverse of [{:(7,4),(1,-2):}]

    Text Solution

    |

  7. Find the inverse of each of the following matrices [{:(-1,2),(-3,5):}...

    Text Solution

    |

  8. Find adjoint of each of the matrices [{:(0,1,2),(1,2,3),(3,1,1):}]

    Text Solution

    |

  9. Find inverse of [{:(1,2,1),(3,2,3),(1,1,2):}]

    Text Solution

    |

  10. If A=[{:(costheta,sintheta),(-sintheta,costheta):}] then prove that ...

    Text Solution

    |

  11. Find the matrix X such that , X[{:(5,-7),(-2,3):}]=[{:(-16,-6),(7,2)...

    Text Solution

    |

  12. Find the matrix X such that , [{:(2,-1),(1,0),(-3,4):}]X=[{:(-1,-8...

    Text Solution

    |

  13. Find x, if [1" "x" "1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=...

    Text Solution

    |

  14. Find the real numbers x and y so that (xI+yA)^(2)=A, where A=[{:(0,1),...

    Text Solution

    |

  15. For square matrices A and B , AB=A and BA =B, then prove that A^(2)=A...

    Text Solution

    |

  16. If A(alpha)=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] then prove...

    Text Solution

    |

  17. If A=[{:(4,x+2),(2x-3,x+1):}] is symmetric matrix then find x.

    Text Solution

    |

  18. A=[{:(a,b),(0,1):}],ane1 then prove that A^(n)=[{:(a^(n),(b(a^(n)-1))/...

    Text Solution

    |

  19. A=[{:(4,3),(2,5):}],A^(2)-xA+yI=0. Find real numbers x and y. where I...

    Text Solution

    |

  20. If A=[{:(0,1),(0,0):}]andI=[{:(1,0),(0,1):}] then prove that (aI+bA)...

    Text Solution

    |