Home
Class 12
MATHS
Prove that : A^(2)-6A+17I(2)=0. When A=...

Prove that : `A^(2)-6A+17I_(2)=0`. When `A=[{:(2,-3),(3,4):}]` Also find `A^(-1)`.

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    KUMAR PRAKASHAN|Exercise Practice Paper - 3 ( Section -D)|1 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise Practice Paper - 3 (Section - D)|1 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise Practice Paper - 3 (Section - B )|4 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos
  • PROBABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 13 (Section - D (Answer the following questions))|2 Videos

Similar Questions

Explore conceptually related problems

Verify that A^(2)=I when A=[{:(0,1,-1),(4,-3,4),(3,-3,4):}] .

If A=[1,7] and B=[{:(2,1),(3,4):}] , then find AB.

Find A^(2)-5A+6I , if A=[{:(2,0,1),(2,1,3),(1,-1,0):}] .

If A^(-1)=[{:(-4,2),(3,-1):}]and B=[{:(0,3),(-2,5):}] then find (AB)^(-1)

For matrix A=[{:(1,1,1),(1,2,-3),(2,-1,3):}] . Prove that , A^(3)-6A^(2)+5A+11I=0 . Hence find A^(-1) using it .

For the matrix A=[{:(2,3),(1,2):}] , show that A^2-4A+I_2=0 . Hence, find A^(-1)

If A=[{:(1,2,3),(2,3,1):}]andB=[{:(3,-1,3),(-1,0,2):}] , then find 2A-B .

If A^(-1)=[{:(3,-1,1),(-15,6,-5),(5,-2,2):}] and B=[{:(1,2,-2),(-1,3,0),(0,-2,1):}] then find (AB)^(-1)