Home
Class 12
MATHS
For any vector vec(alpha), what is (vec(...

For any vector `vec(alpha)`, what is `(vec(alpha). hat( i)) hat(i)+(vec(alpha). hat(j)) hat(j)+(vec(alpha). hat(k)) hat(k)` equal to ?

A

0

B

`vec(a)`

C

`2vec(a)`

D

`3vec(a)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE WORKOUT (Single Option Correct Type) (2 Mark)|15 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE WORKOUT (One or More than One Option Correct Type) (2 Mark)|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos

Similar Questions

Explore conceptually related problems

For any vector alpha what (alpha . hat(i)) hat(i) + (alpha.hat(j)) hat(j) + (alpha.hat(k)) hat(k) equal to ?

For any vector vec(a) , the value of |vec(a) xx hat(i)|^(2) + |vec(a) xx hat(j)|^(2) + |vec(a) xx hat(k)|^(2) is equal to

For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |vec(a) xx hat(k)|^(2) is equal to

If vec(beta) is perpendicular to both vec(alpha) and vec(gamma) where vec(alpha)= hat(k) and vec(gamma) = 2hat(i) + 3hat(j) + 4hat(k) , then what is vec(beta) equal to ?

For any vector vec r ,prove that vec r=(vec r*hat i)hat i+(vec r*hat j)hat j+(vec r*hat k)hat k

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

If vec(beta) is perpendicular to both vec(alpha) and vec(lambda) where vec(alpha)=hat(k) and vec(lambda)=2hat(i)+3 hat(j)+4 hat(k) , then what is vec(beta) equal to ?

Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

If angle bisector of vec(a) = 2hat(i) + 3hat(j) + 4hat(k) and vec(b) = 4hat(i) - 2hat(j) + 3 hat(k) is vec(c) = alpha hat(i) + 2hat(j) + beta hat(k) then :

Let vec(alpha)=hat(i) +2 hat(j) - hat(k), vec(beta) = 2 hat(i) - hat(j) + 3 hat(k) and vec(lambda)=2hat(i) + hat(j) + 6 hat(k) be three vectors. If vec(alpha) and vec(beta) are both perpendicular to the vector vec(delta) and vec(delta).vec(lambda)=10 , then what is the magnitude of vec(delta) ?