Home
Class 12
MATHS
If vec(a),vec(b),vec(c) are the position...

If `vec(a),vec(b),vec(c)` are the position vectors of points A, B, C respectively such that `5vec(a)-3vec(b)-2vec(c)=vec(0),` then

A

C divides BA internally in ratio 5 : 3

B

C divides BA externally in ratio 5 : 3

C

C divides AB internally in ratio 5 : 3

D

C divides AB externally in ratio 5 : 3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE WORKOUT (Single Option Correct Type) (2 Mark)|15 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE WORKOUT (One or More than One Option Correct Type) (2 Mark)|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos

Similar Questions

Explore conceptually related problems

If vec(a),vec(b),vec(c) are the position vectors of the points A, B, C respectively such that 3vec(a)+5vec(b)=8vec(c) then find the ratio in which C divides AB.

If vec a,vec b,vec c are the position vectors of points A,B,C and D respectively such that (vec a-vec d)*(vec b-vec c)=(vec b-vec d)*(vec c-vec a)=0 then D is the

vec a,vec b and vec c are the position vectors of points A,B and C respectively,prove that: vec a_(vec a)xvec b+vec bxvec c+vec cxvec a is vector perpendicular to the plane of triangle ABC.

If vec a,vec b,vec c are position vectors o the point A,B, and C respectively,write the value of vec AB+vec BC+vec AC

vec a,vec b,vec c,vec d are the position vectors of the four distinct points A,B,C, D respectively.If vec b-vec a=vec c-vec d, then show that ABCD is a parallelogram.

If vec(a),vec(b),vec(c) are mutually perpendicular vectors having magnitudes 1,2,3 respectively, then [vec(a)+vec(b)+vec(c)" "vec(b)-vec(a)vec(c)]=

If vec a,vec b,vec c and vec d are the position vectors of the points A,B,C and D respectively in three dimensionalspace no three of A,B,C,D are collinear and satisfy the relation 3vec a-2vec b+vec c-2vec d=0, then

Let vec(a), vec(b), vec(c) be vectors of length 3, 4, 5 respectively. Let vec(a) be perpendicular to vec(b)+vec(c), vec(b) to vec(c)+vec(a) and vec(c) to vec(a)+vec(b) . Then |vec(a)+vec(b)+vec(c)| is :