Home
Class 12
MATHS
Let vec(u),vec(v),vec(w) be such that ve...

Let `vec(u),vec(v),vec(w)` be such that `vec(u)+vec(v)+vec(w)=0.` If `|vec(u)|=3,|vec(v)|=4,|vec(w)|=5,` then `vec(u).vec(v)+vec(v).vec(w)+vec(w).vec(u)=`

A

47

B

25

C

-25

D

-47

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE WORKOUT (Single Option Correct Type) (2 Mark)|15 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE WORKOUT (One or More than One Option Correct Type) (2 Mark)|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos

Similar Questions

Explore conceptually related problems

Let vec u , vec va n d vec w be vectors such that vec u+ vec v+ vec w=0. If | vec u|=3,| vec v|=4a n d| vec w|=5, then vec udot vec v+ vec vdot vec w+ vec wdot vec u is 47 b. -25 c. 0 d. 25

Let vec u,vec v and vec w be vector such vec u+vec v+vec w=vec 0* If |vec u|=3,|vec v|=4 and |vec w|=5, then find vec u.vec v+vec v*vec w+vec w*vec u

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?

If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=3, |vec(b)| =4 and |vec(c )|=5 , then show that vec(a).vec(b)+vec(b).vec(c )+vec(c ). vec(a)=-25 .

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a),vec(b)+vec(b).vec(c )+vec(c ).vec(a) .

Let vec u ,\ vec v\ a n d\ vec w be vector such vec u+ vec v+ vec w=0.\ if | vec u|=3,\ | vec v|=4\ a n d\ | vec w|=5, then find vec udot vec vdot+ vec vdot vec w+ vec wdot vec udot

Let vec(a), vec(b), vec(c) be non-coplanar vectors and vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]), vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]), vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)]) . What is the value of (vec(a)-vec(b)-vec(c)).vec(p)+(vec(b)-vec(c)-vec(a)).vec(q)+(vec(c)-vec(a)-vec(b)).vec(r) ?

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is |vec(a)+vec(b)| equal to ?