Home
Class 12
MATHS
If V is the volume of the parallelepiped...

If V is the volume of the parallelepiped having three coterminous edges, as `vec(a),vec(b)andvec(c),` then the volume of the parallelepiped having three coterminous edges as `alpha=(vec(a).vec(a))vec(a)+(vec(a).vec(b))vec(b)+(vec(a).vec(c))vec(c)`
`beta=(vec(a).vec(b))vec(a)+(vec(b).vec(b))vec(b)+(vec(b).vec(c))vec(c)`
`gamma=(vec(a).vec(c))vec(a)+(vec(b).vec(c))vec(b)+(vec(c).vec(c))vec(c)` is

A

`V^(3)`

B

3V

C

`V^(2)`

D

2V

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE WORKOUT (Single Option Correct Type) (2 Mark)|15 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE WORKOUT (One or More than One Option Correct Type) (2 Mark)|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos

Similar Questions

Explore conceptually related problems

[vec(a)vec(b)vec(c )]=[vec(b)vec(c )vec(a)]=[vec(c )vec(a)vec(b)] .

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

The volume of a tetrahedron formed by the coterminous edges vec a,vec b, and vec c is 3. Then the volume of the parallelepiped formed by the coterminous edges vec a+vec b,vec b+vec c and vec c+vec a is 6 b.18 c.36 d.9

If vec(a)=vec(b)+vec(c ) , then |vec(a)|=|vec(b)+vec(c )| .

Prove that : {(vec(b)+vec(c ))xx(vec(c )+vec(a))}.(vec(a)+vec(b))=2[vec(a)vec(b)vec(c )]

Prove that : (vec(b)+vec(c )).{(vec(c )+vec(a))xx(vec(a)+vec(b))}=2 [vec(a)vec(b)vec(c )] .

If vec(a).vec(b)xx vec(c )≠0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b).vec(b')+vec(c ).vec(c')=3

Volume of parallelepiped determined by vectors vec a,vec b and vec c is 5. Then the volume of the parallelepiped determined by vectors 3(vec a+vec b),(vec b+vec c) and 2(vec c+vec a) is

Let vec(a), vec(b), vec(c) be non-coplanar vectors and vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]), vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]), vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)]) . What is the value of (vec(a)-vec(b)-vec(c)).vec(p)+(vec(b)-vec(c)-vec(a)).vec(q)+(vec(c)-vec(a)-vec(b)).vec(r) ?

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b). vec(b')+vec(c ). vec(c')=3 .