Home
Class 12
MATHS
Let hat(alpha),hat(beta),hat(gamma) be t...

Let `hat(alpha),hat(beta),hat(gamma)` be three unit vectors such that `hat(alpha)xx(hat(beta)xxhat(gamma))`
`=(1)/(2)(hat(beta)+hat(gamma))" where "hat(alpha)xx(hat(beta)xxhat(gamma))=(hat(alpha).hat(gamma))hat(beta)-(hat(alpha).hat(beta))hat(gamma).` If `hat(beta)" is not parallel to "hat(gamma)," then the angle between "hat(alpha)andhat(beta)` is

A

`(5pi)/(6)`

B

`(pi)/(6)`

C

`(pi)/(3)`

D

`(2pi)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE WORKOUT (One or More than One Option Correct Type) (2 Mark)|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos

Similar Questions

Explore conceptually related problems

Let hat(a) , hat(b) " and " hat( c) be three unit vectors such that hat(a) xx (hat(b) xx hat( c)) = (sqrt(3))/(2)( hat(b) +hat(c )). If hat(b) is not parallel to hat( c) then the angle between hat(a) " and " hat(b) is

If hat(a) and hat(b) are unit vectors such that (hat(a) + hat(b)) is a unit vector, what is the angle between hat(a) and hat(b) ?

Let alpha, beta and gamma be distinct real numbers. The points with position vectors alpha hat(i) + beta hat(j) + gamma hat(k), beta hat(i) + gamma hat(j) + alpha hat(k) and gamma hat(i) + alpha hat(j) + beta hat(k)

If hat(i), hat(j), hat(k) are the unit vectors and mutually perpendicular, then [[hat(i), hat(j), hat(k)]] =

If hat(e_1), hat(e_2) and hat(e_1)+hat(e_2) are unit vectors, then angle between hat(e_1) and hat(e_2) is

Find the angle between hat(i)+hat(j)+hat(k) and hat(i)+hat(j)-hat(k) .

For any vector alpha what (alpha . hat(i)) hat(i) + (alpha.hat(j)) hat(j) + (alpha.hat(k)) hat(k) equal to ?

Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+hat(k).(hat(i)xxhat(j)) .

For any vector vec(alpha) , what is (vec(alpha). hat( i)) hat(i)+(vec(alpha). hat(j)) hat(j)+(vec(alpha). hat(k)) hat(k) equal to ?

If hat a and hat b are unit vectors such that [ hata hatb hatatimeshatb ]= (1)/(4) ,then the angle between hat a and hat b ,is equal to