Home
Class 11
MATHS
If cos alpha=3/5 and cos beta = 5/13 and...

If cos alpha=3/5 and cos beta = 5/13 and alpha , beta are acute angles , then prove that `cos^(2)((alpha+beta)/2)=16/65`

Promotional Banner

Topper's Solved these Questions

  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE |15 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise EXERCISE-1 |35 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise EXERCISE 3.1 ( SHORT ANSWER QUESTION )|18 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - II) (LEVEL - II) (Linked Comprehension Type Questions)|5 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|62 Videos

Similar Questions

Explore conceptually related problems

If cos alpha =(3)/(5) and cos beta =(5)/(13) and alpha, beta are acute angles, then prove that (a) sin ^(2)((alpha-beta)/(2))=(1)/(65) and (b) cos ^(2)((alpha+beta)/(2))=(16)/(65)

Prove that |cos alpha - cos beta| le | alpha - beta| .

If alpha , beta are supplementary angles , then cos^(2)alpha + sin^(2) beta =

If sin alpha cos h beta = cos theta and cos alpha sin h beta= sin theta , then prove that sinh^(2)beta= cos^(2)alpha .

If sin alpha = sin beta and cos alpha = cos beta then

If cos alpha + cos beta =0 = sin alpha + sin beta " then " cos (alpha - beta )=