Home
Class 11
MATHS
Prove that Lt(xto0)(a^(kx)-1)/x=k.loga(a...

Prove that `Lt_(xto0)(a^(kx)-1)/x=k.loga(agt0,ane1)`.

Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-2.1 (VERY SHORT ANSWER QUESTIONS)|20 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-2.1 (SHORT ANSWER QUESTIONS)|17 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Show that Lt_(xto0)(e^(x)-1)/x=1

Prove that Lt_(x to 0) (a^(kx)-1)/(x)=k. log a (a gt theta, a ne 1)

Prove that Lt_(xto0)(1/x-1/sinx)=0

Show that Lt_(xto0)(e^(ax)-1)/x=a(ainR)

Show that Lt_(xto0-)(|x|)/x=-1

Show that Lt_(xto0+)(|x|)/x=1

Show that Lt_(xto0)(sin^(-1)(x))/x=1

Show that Lt_(xto0)(sinax)/x=a(ainR) .

Show that Lt_(xto0)(a^(x)-1)/(b^(x)-1)=log_(b)a where a and b are positive numbers other than unity.

Show that Lt_(xto0)((1+x)^(3//2)-1)/x=3/2