Home
Class 11
MATHS
Show that Lt(xto-2^(+))sqrt(x^(2)-4)=0=L...

Show that `Lt_(xto-2^(+))sqrt(x^(2)-4)=0=Lt_(xto-2)sqrt(x^(2)-4)`

Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-2.2 (VERY SHORT ANSWER QUESTIONS)|16 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-2.2 (SHORT ANSWER QUESTIONS)|8 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-2.1 (VERY SHORT ANSWER QUESTIONS)|20 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Show that Lt_(x to-2) sqrt(x^(2)-4)=0= Lt_(x to 2) sqrt(x^(2)-4)

Lt_(x to 2) sqrt(4-x^(2))=

Show that Lt_(xto2-)(|x-2|)/(x-2)=-1

Show that Lt_(xto0)(e^(x)-1)/x=1

Show that Lt_(xto0-)(|x|)/x=-1

Show that Lt_(xto0+)(|x|)/x=1

Show that Lt_(xto0)((1+x)^(3//2)-1)/x=3/2

Show that : Lt_(x to 0)(sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1+x^(2))-sqrt(1-x))=1

Show that Lt_(xto0)(sqrt(7+x)-sqrt(7+x^(2)))/(sqrt(7-x^(2))-sqrt(7-x))=1

Show that Lt_(xto0)(x)/(sqrt(1+x)-sqrt(1-x))=1