Home
Class 11
MATHS
underset(n to oo)lim (1+3+6+...+n(n+1)//...

`underset(n to oo)lim (1+3+6+...+n(n+1)//2)/(n^(3))=`

Text Solution

Verified by Experts

The correct Answer is:
`1/6`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-2.7|19 Videos
  • LIMITS

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|33 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-2.5 (SHORT ANSWER QUESTIONS)|8 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

underset(n to oo)lim (1+2+3+...+n)/(n^(2))=

underset(n to oo)lim (1+3+5+....+(2n-1))/(2+4+6+..2n)

underset(n to oo)lim (2^(n)-1)/(3^(n)+1)=

underset(n to oo)lim (5^(n)+1)/(3^(n)-1)=

underset(n to oo)lim (1+3+3^(2)+...3^(n))/(1+2+2^(2)+...+2^(n))=

underset(n to oo)lim (2^(n)-n)/(2^(n))=

underset(n to oo)lim (2^(1//n)-1)/(2^(1//n)+1)=

underset(n to oo)lim (n(1^(3)+2^(3)+...+n^(3))^(2))/((1^(2)+2^(2)+...+n^(2))^(3))=

underset(n to oo)lim (1^(3)+2^(3)+3^(3)+...+n^(3))/(n^(4))=