Home
Class 11
MATHS
Show that Lt(xto0)(tanx/x)^(1/x^(2))=e...

Show that
`Lt_(xto0)(tanx/x)^(1/x^(2))=e^(1/3)`

Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise SOLVED EXAMPLES|57 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE 1.1 (VERY SHORT ANSWER QUESTIONS)|23 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-2.7|19 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Show that Lt_(xto0+)(|x|)/x=1

Evaluate the following limits: Show that lim_(x to0) ((tanx)/(x))^(1//x^(2))=e^(1//3)

Show that Lt_(xto0-)(|x|)/x=-1

Lt_(x to 0)((tanx)/(x))^((1)/(x^(2)))=

Show that Lt_(xto0)(e^(x)-1)/x=1

Evaluate Lt_(xto0)(cosx)^(1/x^(2))

Show that Lt_(xto0)(e^(ax)-1)/x=a(ainR)

Show that Lt_(xto0)(sin^(-1)(x))/x=1

Show that Lt_(xto0)((1+x)^(3//2)-1)/x=3/2

Show that Lt_(xto0)(cosecx-cotx)/x=1/2