Home
Class 11
PHYSICS
In the problem discussed in the text, fi...

In the problem discussed in the text, find the values of `E` and `V` at `p` dua to the remaining mass.

Text Solution

AI Generated Solution

The correct Answer is:
To find the gravitational field \( E \) and gravitational potential \( V \) at point \( P \) due to the remaining mass, we will follow these steps: ### Step 1: Determine the mass of the cavity The mass of the cavity can be calculated using the formula for the volume of a sphere and the density \( \rho \): \[ \text{Mass of cavity} = \rho \times \text{Volume of cavity} = \rho \times \left( \frac{4}{3} \pi \left( \frac{R}{4} \right)^3 \right) \] Calculating this gives: \[ \text{Mass of cavity} = \rho \times \frac{4}{3} \pi \times \frac{R^3}{64} = \frac{\rho \pi R^3}{48} \] ### Step 2: Determine the mass of the solid sphere without the cavity The mass of the solid sphere can be calculated similarly: \[ \text{Mass of solid sphere} = \rho \times \left( \frac{4}{3} \pi R^3 \right) = \frac{4}{3} \pi R^3 \rho \] Let’s denote this mass as \( M \). ### Step 3: Calculate the gravitational field \( E \) The total gravitational field \( E \) at point \( P \) is the sum of the gravitational fields due to the solid sphere and the cavity: \[ E = E_{\text{solid}} - E_{\text{cavity}} \] Where: - \( E_{\text{solid}} = -\frac{GM}{(3R)^2} \hat{i} \) - \( E_{\text{cavity}} = -\frac{G \left( \frac{\rho \pi R^3}{48} \right)}{\left( \frac{9R}{4} \right)^2} \hat{i} \) Calculating these values: \[ E_{\text{solid}} = -\frac{G \left( \frac{4}{3} \pi R^3 \rho \right)}{9R^2} \hat{i} = -\frac{4G \pi R \rho}{27} \hat{i} \] \[ E_{\text{cavity}} = -\frac{G \left( \frac{\rho \pi R^3}{48} \right)}{\left( \frac{9R}{4} \right)^2} = -\frac{G \left( \frac{\rho \pi R^3}{48} \right)}{\frac{81R^2}{16}} = -\frac{16G \rho \pi R}{3888} \] ### Step 4: Combine the gravitational fields Now, substituting these values into the equation for \( E \): \[ E = -\frac{4G \pi R \rho}{27} + \frac{16G \rho \pi R}{3888} \] ### Step 5: Calculate the gravitational potential \( V \) The gravitational potential \( V \) at point \( P \) is given by: \[ V = V_{\text{solid}} - V_{\text{cavity}} \] Where: - \( V_{\text{solid}} = -\frac{GM}{3R} \) - \( V_{\text{cavity}} = -\frac{G \left( \frac{\rho \pi R^3}{48} \right)}{\frac{9R}{4}} \) Calculating these values: \[ V_{\text{solid}} = -\frac{G \left( \frac{4}{3} \pi R^3 \rho \right)}{3R} = -\frac{4G \pi R^2 \rho}{9} \] \[ V_{\text{cavity}} = -\frac{G \left( \frac{\rho \pi R^3}{48} \right)}{\frac{9R}{4}} = -\frac{4G \rho \pi R^2}{432} \] ### Step 6: Combine the gravitational potentials Now, substituting these values into the equation for \( V \): \[ V = -\frac{4G \pi R^2 \rho}{9} + \frac{4G \rho \pi R^2}{432} \] ### Final Values After performing the calculations, we find: - Gravitational field \( E \) at point \( P \) - Gravitational potential \( V \) at point \( P \)

To find the gravitational field \( E \) and gravitational potential \( V \) at point \( P \) due to the remaining mass, we will follow these steps: ### Step 1: Determine the mass of the cavity The mass of the cavity can be calculated using the formula for the volume of a sphere and the density \( \rho \): \[ \text{Mass of cavity} = \rho \times \text{Volume of cavity} = \rho \times \left( \frac{4}{3} \pi \left( \frac{R}{4} \right)^3 \right) \] Calculating this gives: ...
Promotional Banner

Topper's Solved these Questions

  • GRAVITATION

    DC PANDEY ENGLISH|Exercise Miscellaneous Examples|8 Videos
  • GRAVITATION

    DC PANDEY ENGLISH|Exercise Exercise 13.1|5 Videos
  • GRAVITATION

    DC PANDEY ENGLISH|Exercise (C) Chapter Exercises|45 Videos
  • GENERAL PHYSICS

    DC PANDEY ENGLISH|Exercise INTEGER_TYPE|2 Videos
  • KINEMATICS

    DC PANDEY ENGLISH|Exercise INTEGER_TYPE|10 Videos