Home
Class 11
PHYSICS
Calculate the change in the value of g a...

Calculate the change in the value of g at altitude `45^(@)`. Take radius of earth `R = 6.37 xx 1-0^(3)` km`.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the change in the value of \( g \) at an altitude of \( 45^\circ \), we will follow these steps: ### Step 1: Understand the formula for the change in \( g \) The change in the value of gravitational acceleration \( g \) at a latitude \( \theta \) is given by the formula: \[ g' = g - R \omega^2 \cos^2 \theta \] where: - \( g' \) is the new value of gravitational acceleration, - \( g \) is the standard value of gravitational acceleration (approximately \( 9.81 \, \text{m/s}^2 \)), - \( R \) is the radius of the Earth, - \( \omega \) is the angular speed of the Earth, - \( \theta \) is the latitude. ### Step 2: Convert the radius of the Earth to meters Given: \[ R = 6.37 \times 10^3 \, \text{km} = 6.37 \times 10^6 \, \text{m} \] ### Step 3: Calculate the angular speed \( \omega \) The angular speed \( \omega \) of the Earth can be calculated using: \[ \omega = \frac{2\pi}{T} \] where \( T \) is the time period of rotation of the Earth, which is \( 24 \, \text{hours} = 24 \times 3600 \, \text{seconds} \). Calculating \( T \): \[ T = 24 \times 3600 = 86400 \, \text{s} \] Now substituting \( T \) into the formula for \( \omega \): \[ \omega = \frac{2\pi}{86400} \approx 7.27 \times 10^{-5} \, \text{rad/s} \] ### Step 4: Calculate \( \cos^2 \theta \) For \( \theta = 45^\circ \): \[ \cos 45^\circ = \frac{1}{\sqrt{2}} \quad \Rightarrow \quad \cos^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] ### Step 5: Substitute values into the formula Now we can substitute \( R \), \( \omega \), and \( \cos^2 \theta \) into the formula: \[ g' - g = -R \omega^2 \cos^2 \theta \] Substituting the values: \[ g' - g = - (6.37 \times 10^6) \times (7.27 \times 10^{-5})^2 \times \frac{1}{2} \] Calculating \( \omega^2 \): \[ \omega^2 = (7.27 \times 10^{-5})^2 \approx 5.29 \times 10^{-9} \, \text{rad}^2/\text{s}^2 \] Now substituting this back into the equation: \[ g' - g = - (6.37 \times 10^6) \times (5.29 \times 10^{-9}) \times \frac{1}{2} \] Calculating: \[ g' - g \approx - (6.37 \times 10^6) \times (2.645 \times 10^{-9}) \approx -0.168 \, \text{m/s}^2 \] ### Step 6: Conclusion Thus, the change in the value of \( g \) at an altitude of \( 45^\circ \) is approximately: \[ \Delta g \approx -0.168 \, \text{m/s}^2 \]

To calculate the change in the value of \( g \) at an altitude of \( 45^\circ \), we will follow these steps: ### Step 1: Understand the formula for the change in \( g \) The change in the value of gravitational acceleration \( g \) at a latitude \( \theta \) is given by the formula: \[ g' = g - R \omega^2 \cos^2 \theta \] where: ...
Promotional Banner

Topper's Solved these Questions

  • GRAVITATION

    DC PANDEY ENGLISH|Exercise Exercise 13.3|5 Videos
  • GRAVITATION

    DC PANDEY ENGLISH|Exercise Exercise 13.4|4 Videos
  • GRAVITATION

    DC PANDEY ENGLISH|Exercise Exercise 13.1|5 Videos
  • GENERAL PHYSICS

    DC PANDEY ENGLISH|Exercise INTEGER_TYPE|2 Videos
  • KINEMATICS

    DC PANDEY ENGLISH|Exercise INTEGER_TYPE|10 Videos