Home
Class 11
PHYSICS
A sinusoidal wave trsvelling in the posi...

A sinusoidal wave trsvelling in the positive direction on a stretched string has amplitude `2.0 cm`, wavelength `1.0 m` and velocity `5.0 m//s`. At `x = 0` and ` t= 0` it is given that `y = 0` and `(dely)/(delt) lt 0`. Find the wave function `y (x, t)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the wave function \( y(x, t) \) for the given sinusoidal wave traveling in the positive direction, we will follow these steps: ### Step 1: Identify the wave parameters Given: - Amplitude \( A = 2.0 \, \text{cm} = 0.02 \, \text{m} \) - Wavelength \( \lambda = 1.0 \, \text{m} \) - Velocity \( v = 5.0 \, \text{m/s} \) ### Step 2: Calculate the wave number \( k \) The wave number \( k \) is given by the formula: \[ k = \frac{2\pi}{\lambda} \] Substituting the value of \( \lambda \): \[ k = \frac{2\pi}{1.0} = 2\pi \, \text{radians/m} \] ### Step 3: Calculate the angular frequency \( \omega \) The angular frequency \( \omega \) can be calculated using the relationship: \[ \omega = v \cdot k \] Substituting the values of \( v \) and \( k \): \[ \omega = 5.0 \cdot 2\pi = 10\pi \, \text{radians/s} \] ### Step 4: Write the general wave function The general form of the wave function for a wave traveling in the positive direction is: \[ y(x, t) = A \sin(kx - \omega t + \phi) \] Substituting the values of \( A \), \( k \), and \( \omega \): \[ y(x, t) = 0.02 \sin(2\pi x - 10\pi t + \phi) \] ### Step 5: Apply the initial conditions At \( x = 0 \) and \( t = 0 \), we have: \[ y(0, 0) = 0 \quad \text{and} \quad \frac{dy}{dt} < 0 \] Substituting into the wave function: \[ y(0, 0) = 0.02 \sin(\phi) = 0 \] This implies: \[ \sin(\phi) = 0 \implies \phi = n\pi \quad (n \in \mathbb{Z}) \] ### Step 6: Determine the value of \( n \) Next, we differentiate \( y(x, t) \) with respect to \( t \): \[ \frac{dy}{dt} = 0.02 \cdot (-10\pi) \cos(2\pi x - 10\pi t + \phi) \] At \( x = 0 \) and \( t = 0 \): \[ \frac{dy}{dt} = -0.02 \cdot 10\pi \cos(\phi) \] For \( \frac{dy}{dt} < 0 \), we need \( \cos(\phi) > 0 \). This occurs when \( \phi = 0, 2\pi, 4\pi, \ldots \) (even multiples of \( \pi \)). ### Step 7: Final wave function Choosing \( n = 0 \) (the simplest case), we have: \[ \phi = 0 \] Thus, the wave function becomes: \[ y(x, t) = 0.02 \sin(2\pi x - 10\pi t) \] ### Conclusion The wave function for the sinusoidal wave traveling in the positive direction is: \[ \boxed{y(x, t) = 0.02 \sin(2\pi x - 10\pi t)} \]

To find the wave function \( y(x, t) \) for the given sinusoidal wave traveling in the positive direction, we will follow these steps: ### Step 1: Identify the wave parameters Given: - Amplitude \( A = 2.0 \, \text{cm} = 0.02 \, \text{m} \) - Wavelength \( \lambda = 1.0 \, \text{m} \) - Velocity \( v = 5.0 \, \text{m/s} \) ...
Promotional Banner

Topper's Solved these Questions

  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Exercise 17.1|4 Videos
  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Exercise 17.2|2 Videos
  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Example Type 5|1 Videos
  • VECTORS

    DC PANDEY ENGLISH|Exercise Medical enrances gallery|9 Videos
  • WORK, ENERGY & POWER

    DC PANDEY ENGLISH|Exercise Level 2 Comprehension Based|2 Videos