Home
Class 11
PHYSICS
Consider the wave y = (5 mm) sin[1 cm^(...

Consider the wave `y = (5 mm) sin[1 cm^(-1) x - (60 s^(-1)) t]`. Find (a) the amplitude, (b) the angular wave number, ( c ) the wavelength, (d) the frequency, (e) the time period and (f) the wave velocity.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the wave equation given and extract the required parameters. Given wave equation: \[ y = (5 \, \text{mm}) \sin\left(1 \, \text{cm}^{-1} \, x - (60 \, \text{s}^{-1}) \, t\right) \] ### Step 1: Find the Amplitude The amplitude \( a \) is the coefficient of the sine function in the wave equation. **Solution:** \[ a = 5 \, \text{mm} \] ### Step 2: Find the Angular Wave Number The angular wave number \( k \) is the coefficient of \( x \) in the sine function. **Solution:** \[ k = 1 \, \text{cm}^{-1} \] ### Step 3: Find the Wavelength The wavelength \( \lambda \) is related to the angular wave number \( k \) by the formula: \[ \lambda = \frac{2\pi}{k} \] **Solution:** \[ \lambda = \frac{2\pi}{1 \, \text{cm}^{-1}} = 2\pi \, \text{cm} \] ### Step 4: Find the Frequency The frequency \( f \) can be calculated from the angular frequency \( \omega \) using the formula: \[ f = \frac{\omega}{2\pi} \] where \( \omega = 60 \, \text{s}^{-1} \). **Solution:** \[ f = \frac{60}{2\pi} \approx 9.55 \, \text{Hz} \] ### Step 5: Find the Time Period The time period \( T \) is the reciprocal of the frequency: \[ T = \frac{1}{f} \] **Solution:** \[ T = \frac{1}{\frac{60}{2\pi}} = \frac{2\pi}{60} = \frac{\pi}{30} \, \text{s} \] ### Step 6: Find the Wave Velocity The wave velocity \( v \) can be calculated using the formula: \[ v = f \cdot \lambda \] **Solution:** \[ v = \left(\frac{60}{2\pi}\right) \cdot (2\pi) = 60 \, \text{cm/s} \] ### Summary of Results: (a) Amplitude: \( 5 \, \text{mm} \) (b) Angular wave number: \( 1 \, \text{cm}^{-1} \) (c) Wavelength: \( 2\pi \, \text{cm} \) (d) Frequency: \( \approx 9.55 \, \text{Hz} \) (e) Time period: \( \frac{\pi}{30} \, \text{s} \) (f) Wave velocity: \( 60 \, \text{cm/s} \)

To solve the problem step by step, we will analyze the wave equation given and extract the required parameters. Given wave equation: \[ y = (5 \, \text{mm}) \sin\left(1 \, \text{cm}^{-1} \, x - (60 \, \text{s}^{-1}) \, t\right) \] ### Step 1: Find the Amplitude The amplitude \( a \) is the coefficient of the sine function in the wave equation. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Exercise 17.3|4 Videos
  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Exercise 17.4|2 Videos
  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Exercise 17.1|4 Videos
  • VECTORS

    DC PANDEY ENGLISH|Exercise Medical enrances gallery|9 Videos
  • WORK, ENERGY & POWER

    DC PANDEY ENGLISH|Exercise Level 2 Comprehension Based|2 Videos